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ABSTRACT

The exponential growth of cyber threats poses significant challenges to traditional in-
trusion detection systems, which often struggle with the massive volume of data and
the high cost of manual labeling. This study investigates the application of Active
Learning as a strategy to enhance attack detection efficiency in user authentication
systems. Using the CIC-IDS2017 and LANL benchmark datasets, the research eval-
uated three distinct scenarios: infrastructure brute force, web application attacks, and
post-authentication lateral movement. The methodology employed an offline simula-
tion based on uncertainty sampling, where the model iteratively selected the most in-
formative instances for training. The results demonstrate that active models, trained
with only 120 samples, achieved detection rates comparable to fully supervised base-
lines trained on hundreds of thousands of examples. Specifically in the Web Attack
scenario, the approach achieved a Recall of 89% and a Precision exceeding 99%, rep-
resenting a labeling effort reduction of over 99.9%. Additionally, the application of a
hybrid architecture to the LANL dataset allowed for the effective filtering of over 29,000
false positives. The computational analysis confirmed the viability of the solution for
real-time implementation, with inference latencies in the order of microseconds.

Keywords: Intrusion Detection, Active Learning, Authentication, Machine
Learning, Cybersecurity.
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RESUMO

O crescimento exponencial das ameaças cibernéticas impõe desafios significativos
aos sistemas de detecção de intrusão tradicionais, que frequentemente enfrentam di-
ficuldades com o volume massivo de dados e o alto custo da rotulagem manual. Este
estudo investiga o uso do Aprendizado Ativo (Active Learning) como estratégia para au-
mentar a eficiência na detecção de ataques em sistemas de autenticação. Utilizando os
conjuntos de dados CIC-IDS2017 e LANL, a pesquisa avaliou três cenários: força bruta
em infraestrutura, ataques a aplicações web e movimentação lateral pós-autenticação.
Ametodologia empregou uma simulação offline baseada emamostragempor incerteza,
onde o modelo selecionou iterativamente as instâncias mais informativas para treina-
mento. Os resultados demonstram que modelos ativos, treinados com apenas 120
amostras, alcançaram taxas de detecção comparáveis a baselines supervisionados
treinados com centenas de milhares de exemplos. No cenário de ataquesWeb, a abor-
dagem atingiu um Recall de 89% e Precisão superior a 99%, representando uma re-
dução no esforço de rotulagem superior a 99,9%. Adicionalmente, a aplicação de uma
arquitetura híbrida no dataset LANL permitiu a filtragem eficaz de mais de 29.000 fal-
sos positivos. A análise computacional confirmou a viabilidade da solução para tempo
real, com latências de inferência na ordem de microssegundos.

Palavras-chave: Detecção de Intrusão, Aprendizado Ativo, Autenticação,
Aprendizado de Máquina, Cibersegurança.
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1
INTRODUCTION

Over the years, the context of security in technological evolution has progressed
significantly, enabling improved system protection and new functionalities in software
projects, leading to more robust and efficient systems. However, in parallel to this
process, more tools and strategies are created to exploit vulnerabilities in programs,
networks, and projects [6].

The impact of these vulnerabilities extends beyond technical risks to significant eco-
nomic losses. According to the report ”The Cost of Poor Software Quality in the US: A
2022 Report” by the Consortium for Information & Software Quality (CISQ) [7], the cost
of poor software quality (CPSQ) has reached approximately $2.41 trillion annually in
the United States alone. Within this staggering figure, operational software failures and
security breaches represent a significant portion. This foundational issue directly cor-
relates with modern cybersecurity challenges, reinforcing the economic imperative for
robust, automated detection mechanisms to mitigate these costs before they escalate
into catastrophic failures.

This financial criticality is even more pronounced when vulnerabilities lead to actual
security incidents. The 2025 Cost of a Data Breach Report shows that the average
global cost of a breach reached USD 4.44 million, marking a 9% reduction compared
to the previous year, largely driven by faster containment of breaches. However, this
global decline is countered by regions like the United States, where the record average
cost increased by 9%, reaching USD 10.22 million. In the threat landscape, the tactic
of many attackers is no longer to ”break in” but rather to ”log in,” actively exploiting vul-
nerabilities created by loose access controls and accounts with excessive permissions.
Although phishing is the most frequent attack vector (16% of incidents), resulting in an
average cost of USD 4.8 million, malicious insider attacks stood out as the most expen-
sive vector, costing an average of USD 4.92 million. Such incidents demonstrate that
speed of response is critical: security teams that extensively use AI and automation
managed to reduce the breach time by 80 days and lower their average costs by USD
1.9 million, emphasizing that investment in modern, phishing-resistant authentication,
such as passkeys, is essential to strengthen human andmachine identities andmitigate
these financial risks [8].

These authentication and access control vulnerabilities directly undermine funda-
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mental security principles encapsulated in the CIA Triad—Confidentiality, Integrity, and
Availability [9]. While Availability concerns service continuity, this research specifically
targets the preservation of Confidentiality and Integrity by detecting unauthorized ac-
cess attempts and anomalous account behaviors. Preventing adversaries from access-
ing sensitive data or manipulating system states through compromised credentials is
essential to maintaining these core security pillars in authentication systems.

The practical manifestation of these principles is evident in industry standards such
as the Open Web Application Security Project (OWASP) Top 10 [10], where Broken Ac-
cess Control is ranked as the number one security risk. Additionally, Identification and
Authentication Failures occupies the seventh position, confirming that securing user
identities remains a persistent and critical challenge. These classifications encom-
pass well-known invasion techniques such as SQL injection and brute-force attacks,
which frequently target access credentials or privilege manipulation. Various solutions
have been developed to combat them, such as standard authentication frameworks and
multi-factor authentication (MFA)mechanisms. These traditional approaches aim to en-
force the CIA principles through rule-based controls. However, new threats and attack
methods are created daily, aiming to steal a user’s confidential information, which de-
mands constant monitoring and the rapid implementation of new protection measures
to mitigate risks.

While these traditional security mechanisms are effective for rule-based security,
they often face a critical limitation: the inability to actively learn from new attack patterns,
relying heavily on predefined rules and signatures. In this dynamic scenario, one of the
most effective strategies to address this problem is the application of machine learning
(ML) models and algorithms. This technology enables systems not only to detect known
attack patterns but also to identify anomalous behaviors in real-time, anticipating threats
before they materialize. It is applied to the prior detection of attacks such as fraud
detection, phishing, authentication attacks, and intrusion [11]. Thus, machine learning
emerges as an essential layer of protection, complementing traditional solutions and
increasing system resilience against even unknown vulnerabilities.

In this regard, one of the resources most in need of protection lies in user authentica-
tion processes, particularly access control systems for web applications, digital banking
platforms, and corporate systems. These mechanisms play a fundamental role in safe-
guarding personal data [12].

Although machine learning models have become essential for preserving this in-
formation, their application faces some limitations. This is because software systems
handle a large amount of data, requiring high computational power and often making it
infeasible to execute these models in real time [13].

In this context, active learning differentiates itself from traditional ML approaches by
offering a solution that optimizes the use of labeled data and reduces the demand for
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high computational power, emerging as a promising method for efficient real-time threat
detection. While conventional methods require complete and fully labeled datasets— a
costly and, in some cases, unfeasible process in highly dynamic environments— active
learning operates through a selective mechanism that identifies the most informative
samples, such as certain anomalous behaviors, and requests human labeling for critical
cases. The main idea of this technique is to create a good classifier with a small set of
pre-labeled data, with minimal human and computational effort [14].

The main objective of this work is to apply the active machine learning method in
the detection and prevention of invasions in authentication systems. To achieve this
goal, the specific objectives are proposed as follows:

• To evaluate the machine learning techniques and types capable of identifying
attack patterns in real-time, while addressing the challenge of high computational
cost;

• To compare traditional machine learning models with active learning approaches;

• To quantify the solutions found using performance metrics;

• To evaluate the human cost (e.g., time/effort) associated with data labeling in
active learning versus traditional learning scenarios.

By proposing a comparative evaluation between conventional models and approaches
based on active learning, this work aims to contribute to the advancement in the field
of cybersecurity.

This work proceeds as follows: Chapter 2 covers the Theoretical Foundations and
Related Works; Chapter 3 describes theMethodology; Chapter 4 analyzes the Results;
and Chapter 5 presents Conclusions and Future Work.
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2
LITERATURE REVIEW

This chapter establishes the conceptual and academic foundations necessary to
support the development of this research, being structured into two primary sections:
the Theoretical Framework and Related Works. Initially, the fundamental principles
of information security are addressed, providing the necessary context to understand
authentication vulnerabilities and the Machine Learning algorithms applied to defense.
Subsequently, a critical analysis of the state-of-the-art is presented to contextualize the
study within the current academic landscape. This review highlights existing method-
ologies and their contributions while identifying the specific technological gaps that mo-
tivate the adoption of the Active Learning approach proposed in this work.

2.1 THEORETICAL FRAMEWORK
To establish a solid foundation for the proposed methodology, this section reviews

the fundamental concepts underpinning the study. It begins by exploring the core prin-
ciples of user authentication, covering factor categorization and the evolution of modern
authentication mechanisms such as Multi-Factor Authentication (MFA). Subsequently,
the discussion addresses the role of Machine Learning in cybersecurity, detailing the
classification algorithms relevant to anomaly detection. Finally, the theoretical basis
for the performance metrics used in this study is presented, providing the necessary
mathematical context to interpret the experimental results.

2.1.1 Authentication
Authentication is the process of verifying a user’s identity by providing credential

data or evidence that confirms the declared identity [15].
Authentication typically relies on one or more categories of verification factors, which

can be combined to increase system robustness and security, such as [6]:

• Something you know: This category includes static passwords, PINs, or security
questions. While widely used due to their simplicity, these factors are vulnerable
to attacks;

• Something you have: This factor requires the user to possess a physical or vir-
tual object to authenticate. Examples include codes generated by authenticator
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apps, one-time codes sent via SMS, hardware tokens, push notifications to ap-
prove login attempts, and smart cards. These methods add a layer of physical
security, as an attacker would need not only knowledge (the password) but also
possession of the device or token;

• Something you are: Often considered the most secure factor, this authentication
relies on the user’s unique biometric characteristics, which are extremely difficult
to replicate. This includes facial recognition, fingerprint scanning, retina or iris
scanning, voice pattern detection, and, at the most advanced level, behavioral
biometrics.

To further enhance security, critical systems adopt MFA, which requires the combi-
nation of two or more distinct factors (e.g., password + SMS code). This approach is
essential for mitigating threats like credential stuffing or password leaks, in addition to
complying with regulatory requirements, such as the LGPD. There’s also Two-Factor
Authentication (2FA), which is a subset of MFA that specifically uses two factors from
different categories. If more factors are added (e.g., password + token + biometrics),
the system is still classified as MFA [6], [16].

MFA is widely applied in sectors that demand high security. In the financial sec-
tor, it protects bank accounts and card transactions, ensuring that only the authorized
account holder has access to funds or performs confidential transactions. In health-
care, multi-factor authentication is essential for restricting access to sensitive medical
records, guaranteeing patient privacy [16].

However, even with the adoption of robustness measures like Multi-Factor Authen-
tication, authentication mechanisms remain a primary target for adversaries. One of
the most prevalent methods to compromise these systems is the Brute Force Attack,
which involves an automated trial-and-error approach to discover valid credentials [6].
These attacks manifest differently depending on the target layer, a distinction crucial
for detection strategies. At the infrastructure level, attacks target network protocols
such as Secure Shell (SSH) or File Transfer Protocol (FTP), interacting directly with
server ports [9]. Conversely, at the application layer, adversaries target Web login
forms via HTTP requests, simulating user interactions at superhuman speeds to guess
passwords [10].

Beyond the initial entry point, a distinct category of threats becomes apparent dur-
ing the Post-Authentication phase. In this specific scenario, the adversary has already
managed to bypass authentication mechanisms. This unauthorized access is often
achieved through various means, such as successfully guessing credentials, stealing
them via phishing campaigns, or even originating from a malicious insider. Conse-
quently, the primary security concern shifts to Lateral Movement [17]. This technique
describes how a compromised account is utilized to traverse the network, accessing
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multiple machines or servers in search of sensitive data. The detection of such threats
presents a significant challenge, primarily because the credentials being used are tech-
nically valid [12], [15]. Therefore, the indicator of compromise is not an incorrect pass-
word, but rather an anomaly in the behavioral patterns of the user-computer interaction,
such as accessing critical systems outside of standard working hours or connecting to
unauthorized servers.

To address these post-authentication threats, modern security paradigms are shift-
ing towards a Zero Trust architecture, which operates on the principle of ’never trust,
always verify’. In this context, continuous monitoring of user behavior becomes manda-
tory [18]. However, the sheer volume of authentication logs generated by these systems
makesmanual analysis impossible, while traditional rule-based detection systems often
struggle to distinguish between complex attack patterns and legitimate anomalies [11].
This limitation highlights the critical need for data-driven approaches capable of au-
tomating detection while adapting to new threats with minimal human intervention [19].

2.1.2 Machine Learning
Although these traditional mechanisms are effective for known threats, machine

learning in user authentication offers several benefits, including enhanced security through
robust identification methods, adaptive access control based on user behavior, and
faster detection of suspicious activities. It can improve the user experience by stream-
lining access processes while continuously learning and adapting to evolving cyber
threats, predicting future events in unseen data [12], [20].

Machine learning systems can be divided into different applications, such as su-
pervised learning, where the model is trained using a labeled data set, which means
that each input example has an associated correct output (label). The goal is for the
algorithm to learn to map inputs to desired outputs, generalizing to new data. Unsuper-
vised learning, on the other hand, operates on unlabeled data, dedicating itself to pat-
tern identification through techniques like clustering, density estimation, or dimension-
ality reduction for visualization. Complementarily, reinforcement learning — inspired
by behavioral theories — focuses on the sequential optimization of actions in dynamic
environments, where the system learns through reward mechanisms to maximize its
performance in complex tasks [21], [22].

The effective application of Machine Learning in cybersecurity necessitates a com-
prehensive understanding of various models capable of addressing both classification
and anomaly detection tasks. While the broader paradigm encompasses supervised,
unsupervised, and reinforcement learning, establishing a performance baseline is es-
sential for evaluating specialized methodologies and understanding system limitations.
Therefore, a detailed analysis of key classification algorithms, such as Logistic Regres-
sion and Decision Trees, and unsupervised methods, like Isolation Forest, is presented
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here. This comparative foundation is essential for establishing a robust performance
benchmark and enabling a thorough analysis of existing methodologies [12], [9], [19].

2.1.2.1 Logistic Regression
Among the key classification algorithms used as baselines, the Logistic Regres-

sion (LR) model is frequently chosen due to its computational efficiency, simplicity, and
high interpretability, particularly in binary classification tasks (e.g., classifying behavior
as normal or attack). Despite its name, LR is a probabilistic classification algorithm
that utilizes the Sigmoid Function to map any real-valued input into a probability output
ranging strictly between 0 and 1.

Mathematically, the model estimates the probability P (Y = 1|X) by fitting data to a
logistic curve. This linear decision boundary makes it highly effective for identifying vol-
umetric attacks where the separation between normal and malicious traffic is relatively
distinct. Furthermore, its probabilistic nature allows for precise calibration of detection
thresholds. For instance, in a high-security environment, the threshold can be lowered
to catch more potential threats, intentionally increasing the system’s sensitivity to cap-
ture more potential threats, even if it means occasionally flagging legitimate traffic as
suspicious. This tuneability allows the model to be adapted to different risk tolerances,
establishing a flexible security baseline [21].”

Figure 1: Representation of the Sigmoid Function. Source: The Author, based on
Goodfellow et al. [1].

2.1.2.2 Decision Tree
The Decision Tree (DT) algorithm provides a highly interpretable model that simu-

lates human decision-making based on sequential rules. Structurally, the model starts
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from a root node and splits the dataset into subsets based on the value of input fea-
tures (e.g., ”Is login hour> 18:00?”). This process creates internal nodes and ultimately
leads to leaf nodes, which represent the final classification outcome (e.g., ’Normal’ or
’Attack’).

The fundamental principle guiding these splits is the maximization of Information
Gain or the minimization of Impurity. At each step, the algorithm selects the feature
that best separates the classes, aiming to create leaf nodes that are as homogeneous
(pure) as possible. In the context of intrusion detection, DTs are invaluable for their
ability to generate explicit ”white-box” rules (e.g., ”If source IP is blacklisted AND login
frequency > 10/min, then Attack”). This transparency allows security analysts to audit
the model’s logic and understand exactly why a specific event was flagged [21].

Figure 2: Conceptual structure of a Decision Tree algorithm. Source: The Author,
based on Breiman et al. [2].

2.1.2.3 Random Forest
Building upon the principles of Decision Trees, the Random Forest (RF) algorithm

operates as an ensemble learning method that aggregates the results from a multitude
of individual trees. In cybersecurity, RF is highly valued for its ability to significantly
improve accuracy and stability compared to a single Decision Tree, largely because it
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mitigates the common problem of overfitting to the training data.
The RF model achieves this robustness through two key randomization mecha-

nisms:

1. Bagging (Bootstrap Aggregating): Each individual tree is trained on a random
subset of the data sampled with replacement;

2. Feature Randomness: At each node split, the algorithm considers only a random
subset of features rather than all available features.

The final classification is determined by amajority vote among all trees. This ”wisdom of
crowds” approach makes Random Forest exceptionally effective for high-dimensional
data and provides a native measure of Feature Importance, allowing researchers to
identify which attributes are most predictive of an attack [23].

Figure 3: Conceptual diagram of the Random Forest algorithm, illustrating ensemble
learning through the aggregation of multiple Decision Trees [3].

2.1.2.4 Isolation Forest
While the previous models are supervised, Isolation Forest (iForest) is an unsuper-

vised algorithm explicitly designed for anomaly detection. Unlike traditional distance-
based methods (like K-Means) that attempt to profile normal data points, iForest relies
on the principle that anomalies are ”few and different”.

The algorithm builds an ensemble of random trees known as Isolation Trees. Be-
cause anomalies are statistically distinct from normal data, they are easier to ”isolate”
by random partitioning. Consequently, anomalous points tend to terminate much closer
to the root of the tree (requiring fewer splits to be separated), while normal points require
more splits and end up deeper in the tree. The algorithm assigns an anomaly score
based on the average Path Length: shorter average paths indicate a higher likelihood
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of being an anomaly. This logarithmic efficiency (O(n logn)) allows iForest to scale to
massive datasets, making it ideal for filtering millions of logs to find rare insider threats
without requiring prior knowledge of attack signatures [24].

Figure 4: Conceptual structure of the iForest algorithm, illustrating how anomalies are
isolated closer to the root of the Isolation Trees (iTrees) with fewer splits [4].

2.1.2.5 Active Learning
However, traditional intrusion detection systems face a critical limitation: the inability

to actively learn from new attack patterns. This deficiency stems from an over-reliance
on predefined rules and signatures, which restrict the identification of dynamic and un-
cataloged threats. As a result, novel or adaptive attack techniques often go unnoticed,
exposing networks to significant vulnerabilities. The lack of real-time adaptation mech-
anisms reduces the effectiveness of these systems, highlighting the urgent need for
more flexible and proactive approaches to anomaly detection [12].

Among the approaches presented earlier, there is active learning, which combines
supervised and unsupervised learning techniques. The central idea behind active learn-
ing is that if a machine learning algorithm can select the data it uses for learning, it can
achieve greater accuracy with fewer training labels. Active learners issue queries, typi-
cally in the form of unlabeled data instances, which are then labeled by an oracle (e.g.,
a human annotator). Active learning is useful for many modern machine learning prob-
lems because, while unlabeled data is abundant or easy to obtain, obtaining labels is
difficult, time-consuming, or expensive [25].

Regarding implementation, three approaches stand out in active learning [14]:

• Pool-Based Sampling: The algorithm analyzes the entire available unlabeled
dataset (the pool) and selects the most informative samples to be labeled. How-
ever, a challenge with this approach is the potentially high memory consumption
it can require;
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• Stream-Based Selective Sampling: In this approach, unlabeled data points are
evaluated individually as they arrive, and the algorithm itself decides, in real time,
whether or not to request their label. However, a disadvantage arises from the
lack of guarantee that the data scientist will adhere to the planned budget;

• Membership Query Synthesis: It allows the model to generate personalized
queries by creating synthetic examples or combining features from existing data
to maximize learning. However, its application is limited, as it is not suitable for
all situations or problem types.

2.1.2.6 Performance and Prediction Parameters
After training and selecting the most suitable model for a given task, it is essential

to evaluate its performance and predictive capability. The confusion matrix is one of
the primary methods for formally evaluating machine learning models. Also known as
an error matrix, it’s a table that details the performance of a classification or predic-
tion model [26]. Thus, the confusion matrix becomes an essential tool for evaluating
binary classification models—especially in cybersecurity contexts—by categorizing re-
sults into four different groups: True Positives (TP), True Negatives (TN), False Posi-
tives (FP), and False Negatives (FN) [11], as illustrated in Figure 5.

Figure 5: Conceptual structure of the Confusion Matrix. Source: The Author, based on
Fawcett [5].

The TP represent legitimate behaviors, while TN reflect the accuracy in detecting
real threats. Among the classification errors, FP generate incorrect alarms, and FN
occur when the system considers normal traffic as a threat. These presented elements
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allow for various performance metrics to be calculated, going beyond a simple error
rate.

From these elements, the following performance metrics are calculated [11]:

• Precision (Positive Predictive Values): This is the proportion of true positive
classifications relative to the total number of instances classified as positive, as
expressed in Eq. 1.

Precision =
TP

TP + FP
(1)

Precision serves as the primary indicator of operational efficiency in Security Op-
erations Centers (SOCs). A low precision score implies a high rate of FPs, which
significantly contributes to ”alert fatigue.” This phenomenon occurs when secu-
rity analysts become desensitized to warnings due to the overwhelming volume
of noise, potentially causing real threats to be ignored [11]. Therefore, achieving
high precision is essential to ensure that the proposed detection system remains
usable in real-world environments, minimizing the effort wasted on investigating
benign events.

• Recall (Sensitivity or True Positive Rate): The Equation 2 represents themodel’s
ability to correctly detect real threats, calculating the ratio between true positives
and the total number of existing positive instances.

Recall = TP

TP + FN
(2)

In the specific context of cybersecurity research, this metric is frequently priori-
tized over others due to the high stakes involved in intrusion detection [11, 26].
This preference arises from the asymmetry of risk, where a FNs implies a suc-
cessful intrusion that bypassed the defense, potentially leading to catastrophic
data breaches or system compromises. Therefore, maximizing Recall is essen-
tial to ensure a robust security posture, guaranteeing that the system minimizes
the probability of leaving an attack undetected.

• F1 Score: In Equation 3, a metric is established that combines both precision and
recall metrics, serving as a classification of the model’s accuracy, harmonizing
both metrics.

F1 Score = 2× Precision× Recall
Precision+ Recall

(3)

The F1 Score acts as a harmonic balance between Precision and Recall, provid-
ing a single, reliable indicator of the model’s quality. In intrusion detection scenar-
ios, legitimate traffic dominates the dataset, which can allow a model to achieve
high accuracy simply by ignoring rare attack events. The F1-Score prevents this
by penalizing extreme imbalances. It ensures that a high score is only awarded
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if the model is both effective at detecting threats (Recall) and trustworthy in its
alerts (Precision), offering a more honest evaluation of performance in real-world
conditions [11].

2.2 RELATED WORKS
To situate the present study within the current academic landscape, a critical review

of the state-of-the-art was conducted. This section is organized into two complementary
analyses. First, an overview of the benchmark datasets frequently cited in the cyber-
security authentication literature is presented [11], [12], [13], establishing the standards
typically used for experimental validation. Subsequently, specific related works are an-
alyzed, highlighting their methodologies, main contributions, and reported limitations,
thereby identifying the research gaps that this work aims to address.

2.2.1 Benchmark Datasets in the Literature
To validate intrusion detection approaches based on active learning, it’s fundamen-

tal to use datasets that reflect the complexity and dynamism of real threats. These
datasets must meet specific criteria such as a variety of attacks, encompassing both
known threats and anomalous patterns; an adequate balance between normal and ma-
licious events; and rich metadata that includes temporal information, traffic origin, and
authentication context. Table 1 compares the main datasets used in the literature, high-
lighting their suitability for active learning in cybersecurity scenarios for user authenti-
cation.

Table 1: Dataset Descriptions
Dataset Year Data Type Attacks Covered

TON_IoT [27] 2020 IoT and Logs DDoS, Injection, Brute Force
CIC-IDS2017 [28] 2018 Network Traffic SSH-Patator, FTP-Patator, Web Brute

Force, DDoS
LANL Auth Logs [29] 2016 Authentication

Logs
Brute Force, Unauthorized Access,
Lateral Movement

UNSW-NB15 [30] 2015 Network Traffic Intrusion Detection, Exploits, Fuzzers
Kddcup99 [31] 2009 Network Traffic Intrusion Detection, DoS

Following the overview presented in Table 1, a detailed analysis of each dataset’s
characteristics and limitations is essential to understand the landscape of available data
for intrusion detection research.

In the specific domain of the Internet of Things, the TON_IoT [27] dataset stands
out by aggregating telemetry data from sensors with network logs. It collects data from
seven IoT devices and includes columns specific to IoT protocols, such as MQTT and
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Modbus, alongside standard network flow features. Although highly relevant for IoT
security, its specific context relies heavily on sensor data and machine-to-machine pro-
tocols, which diverges significantly from the enterprise authentication environment typ-
ically targeted in general IT security research.

Representing a significant evolution in network security, the CIC-IDS2017 [28] pro-
vides captures of complete network flows structured over a five-day period, designed to
reflect realistic background traffic mixed with diverse attack scenarios. The dataset is
organized chronologically to simulate a typical work week, starting with Monday, which
is dedicated exclusively to Benign traffic, establishing a robust baseline of normal user
behavior and background network noise without any malicious activity. Subsequently,
Tuesday introduces Brute Force attacks targeting infrastructure protocols, specifically
SSH and FTP services, while the period from Wednesday to Friday covers a broad
spectrum of other threats, ranging from Denial of Service (DoS/DDoS) and Heartbleed
to Web Application attacks (SQL Injection, XSS) and Botnets.

Unique among the reviewed sources, the LANL Auth Logs [29] focus exclusively on
authentication events rather than packet-level traffic. Its structure is simplified but highly
specific, containing columns such as Time, Source User, and Destination Computer.
This structure is ideal for analyzing user behavior and detecting post-authentication
threats such as lateral movement, addressing a critical gap that traditional network-
flow datasets often fail to capture.

Slightly preceding these, the UNSW-NB15 [30] was developed to include a hybrid
of real modern normal activities and synthetic attack behaviors. This dataset is notable
for its comprehensive feature set of 49 attributes, categorized into flow, basic, con-
tent, time, and generated features. While it covers nine families of attacks, its focus
remains broad, covering general network exploits rather than specialized authentica-
tion anomalies. This characteristic limits its direct applicability to specific problems like
credential-based attacks, which require a more granular view of authentication flows.

Finally, historically serving as the standard, the KDD Cup 99 [31] dataset is de-
rived from the DARPA98 dataset [32]. It contains approximately 4.9 million connection
records described by 41 features. However, despite its foundational role, it is now con-
sidered outdated due to the lack of modern traffic patterns and the presence of signifi-
cant redundancy, which can bias machine learning models towards unrealistic results.
Consequently, its inclusion in modern studies serves primarily as a historical reference.

This review highlights the diversity of available datasets, each tailored to specific
security domains ranging from modern IoT environments to legacy networks and be-
havioral analysis.

2.2.2 State-of-the-Art Analysis
This state-of-the-art analysis examines contemporary research in machine learning
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applications for cybersecurity authentication. The selected studies span various ap-
proaches, ranging from conventional supervised learning to more advanced interactive
methods, highlighting both their innovative contributions andmethodological limitations.
By synthesizing these findings, this work establishes the research landscape that in-
forms the investigation into Active Learning for intrusion detection, while simultaneously
validating the research opportunity identified in the literature.

To provide a structured overview of the literature, Table 2 presents a consolidated
summary of the related works, highlighting their main contributions, limitations, and
relevance to the present study. Following this overview, a detailed discussion of each
study is provided.

Table 2: Summary of Related Works and Connection to Present Study
Author Year Focus Area Main Contribution Dataset(s)

Used
Reported Limitations

Tadi [33] 2023 Behavioral Au-
thentication in
APIs

Combined behav-
ioral authentication
with ML to create
adaptive systems

Synthetic API
Logs

Absence of experi-
mental validation in
real-world environ-
ments.

Ramakrishnan [18] 2023 ML in Access
Control (IAM/R-
BAC)

Achieved high accu-
racy (95%) and low
latency with conven-
tional ML

Kaggle (Ama-
zon Access)

Prolonged training
time of the SVM model
alone.

Albert-Weiss et al. [34] 2022 Active Learning
(KDPP) in Agri-
culture

Optimized learning
with limited labeled
data using KDPP

Proprietary
(Melon Sam-
ples)

High computational
cost and performance
challenges against
random sampling.

Wiefling et al. [35] 2022 Risk-Based
Authentication
(RBA) in SSO

Developed an ML-
based method to op-
timize RBA parame-
ters using real data

Real-world SSO
Service Logs

Limited exploration of
sophisticated mod-
els (e.g., Siamese,
OCSVM) for risk
scoring.

Dang [19] 2020 Active Learning
in Intrusion De-
tection (IDS)

Demonstrated
strategic selection of
rare samples using
Active Learning with
Naive Bayes

CIDS’12 Restricted to the study
of a single algorithm
(no comparative anal-
ysis).

In the specific context of cybersecurity, Tadi [33] addressed the security challenges
in APIs during accelerated digital expansions, utilizing a synthetic dataset of API logs
to model user behavior. The research distinguished itself by combining behavioral au-
thentication with Machine Learning techniques, demonstrating the potential to create
adaptive systems. This combination is a significant contribution, reinforcing the con-
cept that dynamic, ML-based controls are necessary to secure modern user access.
However, a crucial limitation reported was the absence of experimental validation in
real-world environments, which represents a significant gap in the presented results.
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This limitation directly supports the necessity of the present work’s methodology, which
includes experimental validation and quantification using performance metrics, ensur-
ing the practical effectiveness of the proposed Active Learning approach.

In parallel, Ramakrishnan [18] explored innovative AI applications in access control,
specifically within RBAC and IAM systems, employing the Amazon Access Challenge
dataset from Kaggle. By utilizing algorithms like Random Forest and SVM on this data,
the study achieved an impressive 95% accuracy with a response time of 0.15 seconds,
standing out for its simultaneous processing of complex policies. The work contributes
by demonstrating the high accuracy and low latency achievable by conventional ML
models in identity systems, reinforcing the viability of ML in critical security environ-
ments. However, a key reported limitation was the prolonged training time of the SVM
alone. This limitation is central to our research, as the high training cost associated with
traditional supervised models like SVM is precisely the bottleneck that Active Learning
aims to resolve in the context of real-time threat detection.

Looking at broader applications outside security, Albert-Weiss et al. [34] investigated
the application of non-destructive techniques to evaluate the quality of ’Galia’ melons,
utilizing a proprietary dataset of 30 fresh samples analyzed via spectral sensors. The
study proposed the integration of K-Determinantal Point Processes (KDPP) with Ac-
tive Learning. This constitutes their main contribution: optimizing learning in scenarios
with limited labeled data by strategically selecting samples. As limitations, the authors
highlighted the high computational cost and the challenges in outperforming random
sampling due to the dynamic nature of agricultural parameters. While the application
domain (agriculture) is different, their focus on Active Learning in situations with scarce
labeled data is similar to the challenges faced in real-time threat detection in cyberse-
curity. Furthermore, their finding regarding the high computational cost is a critical point
that the present work aims to address by focusing on optimizing the efficiency of Active
Learning methods in authentication systems.

Returning to dynamic authentication, Wiefling et al. [35] conducted a pioneering
study on Risk-Based Authentication (RBA) in a Single Sign-On (SSO) service, an-
alyzing real-world login logs from a large-scale production environment. Their main
contribution was developing a machine learning-based method for optimizing RBA pa-
rameters using this real data, representing the first large-scale analysis of RBA in a
real environment. This focus on using ML to dynamically adjust authentication con-
trols directly supports the feasibility of the Active Learning approach. However, a key
limitation reported was the limited exploration of more sophisticated models, such as
Siamese neural networks or One-Class Support Vector Machine (OCSVM), for calcu-
lating risk scores. This limitation reinforces the need for our work to compare different
andmodern Active Learning techniques that may offer superior performance in dynamic
authentication environments.
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Finally, regarding intrusion detection systems, Dang [19] innovated by proposing an
Active Learning approach with Naive Bayes, tested on the CIDS’12 benchmark dataset.
The method’s main contribution was its effectiveness in the strategic selection of rare
samples, challenging traditional density-based approaches. This strategic selection is
a key aspect that aligns with the goal of detecting anomalous, low-frequency attacks
in user authentication. The research, however, was limited to the study of a single
algorithm (Naive Bayes), leaving room for comparative investigations with other tech-
niques. This gap directly informs the methodology of the present work, which proposes
a comparative evaluation between different Active Learning approaches and conven-
tional models to identify the most efficient solution for authentication systems.
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3
METHODOLOGY

The present research is classified as applied, as it seeks to address practical chal-
lenges related to security and efficiency in intrusion detection systems within authenti-
cation contexts. Regarding its approach, the study is strictly quantitative and is based
on the statistical analysis of large volumes of network traffic data and behavioral biomet-
rics. From a procedural point of view, the method is defined as experimental. It involves
the controlled manipulation of variables, particularly the size of training sets and query
strategies, to systematically compare the performance of Supervised, Unsupervised,
and Active Learning paradigms.

3.1 GENERAL ARCHITECTURE
To ensure the robustness and reproducibility of the proposed experiments, a specific

computational environment was established. The experiments were conducted using
specific computational resources hosted on an Ubuntu Linux (version 24.04.1) operat-
ing system. The primary language used was Python (version 3.12.3) [36], executed in
Jupyter Notebook environments [37].

The software stack was organized into three functional layers. First, data ma-
nipulation, cleaning, and structuring relied on the Pandas (v2.3.3) [38] and NumPy
(v2.3.3) [39] libraries, while Matplotlib (v3.10.7) [40] and Seaborn (v0.13.2) [41] were
utilized for data visualization and the generation of performance graphs. Subsequently,
the Scikit-learn (v1.7.2) library [42] was utilized as the core engine for machine learning
implementation, providing the necessary infrastructure for data preprocessing, dimen-
sionality reduction, and the training of both supervised and unsupervised models. Fi-
nally, the modAL framework (v0.4.2.1) [43] was integrated to enable the active learning
experiments, managing the query strategies and the oracle simulation.

With the computational framework established, the data selection focused on cov-
ering distinct layers of authentication attacks. The study’s universe comprises authen-
tication events and network traffic logs. For the specific experimental scope of this re-
search, two distinct, publicly validated benchmark datasets were selected. These were
chosen specifically because they provide the necessary granularity to analyze authen-
tication anomalies at different layers (Network, Application, and Post-Authentication),
ensuring a comprehensive evaluation of the proposed detection models.
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Table 3 details the specific datasets utilized in this work, highlighting the attack vec-
tors extracted and their specific application within the study.

Table 3: Benchmark Datasets Utilized in the Experiments
Dataset Year Selected Attack Vec-

tors
Key Features Application in this Study

CIC-IDS2017 [28] 2017 SSH-Patator, FTP-
Patator, Web Brute
Force

Network Flow Metrics
(e.g., Flow Duration,
Packet Counts, TCP
Flags)

Train and compare Super-
vised vs. Active Learn-
ing models for external brute
force.

LANL [29] 2014 Lateral Movement, In-
sider Threat

Authentication Logs
(Time, Source User,
Destination Computer)

Evaluate Unsupervised De-
tection of post-authentication
anomalies and AL refine-
ment.

Following this selection, the datasets were processed to isolate specific scenarios:

1. CIC-IDS2017 (Intrusion Detection Evaluation Dataset): This dataset was the
primary source for analyzing Brute Force attacks [28]. Two specific subsets were
utilized to evaluate the model’s robustness across different attack vectors:

• Infrastructure Layer: Using the Tuesday capture, which contains SSH and
FTP brute force attacks against network protocols;

• Application Layer: Using the Thursday morning capture, which contains
Web-based brute force attacks against HTTP authentication forms.

2. LANL (Los Alamos National Laboratory): Employed for the detection of post-
authentication anomalies [29]. This dataset provided millions of user-computer
authentication events, allowing for the analysis of lateral movement patterns [17]
and insider threats where the attacker already possesses valid credentials.
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Figure 6: General architecture of the experimental framework, illustrating the paral-
lel evaluation of traditional supervised learning and active learning approaches across
three distinct cybersecurity scenarios.

As illustrated in Figure 6, the experimental workflow was guided by a unified ana-
lytical framework, systematically applied across all datasets to ensure methodological
consistency and fair comparison. This structured approach unfolded through four inter-
connected phases: Data Collection, Data Preprocessing, Scenario-Specific Modeling,
and Model Evaluation. By standardizing these stages, the methodology allows for a
direct assessment of the efficiency gains provided by Active Learning in contrast to
traditional supervised methods. The specific implementation details of this pipeline for
each attack scenario are elaborated in the following subsections.

3.2 CASESTUDY I: INFRASTRUCTURELAYERATTACKS (SSH/FTP
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BRUTE FORCE)
This study focused on the detection of high-volume authentication attacks target-

ing network protocols, specifically utilizing the Tuesday capture from the CIC-IDS2017
dataset as the primary data source.

To prepare the data for binary classification, a rigorous preprocessing phase was
executed. The target variable was standardized by mapping instances originally la-
beled as FTP-Patator and SSH-Patator to the positive class (Attack), while all traffic
labeled as BENIGN was assigned to the negative class (Normal). Furthermore, to en-
sure numerical stability for the machine learning algorithms, the dataset underwent a
sanitization process to handle artifacts generated by traffic capture tools, where infinite
values and missing entries were imputed with zero.

The Logistic Regression classifier was selected as the primary algorithm for this
task. This choice is justified by its computational efficiency and interpretability, making it
an ideal baseline for detecting volumetric attacks where the separation between classes
is expected to be largely linear [21]. Furthermore, it is widely recognized in cyberse-
curity literature as a standard benchmark for intrusion detection systems, providing a
necessary reference point to evaluate the gains of more complex models [11]. Unlike
”black-box” models, Logistic Regression provides immediate insight into the relation-
ship between features and attack probability. Finally, its extremely low computational
cost during the inference phase makes it highly suitable for real-time authentication
monitoring, as highlighted in recent reviews on machine learning for user authoriza-
tion [12].

The experimental protocol comprised two distinct scenarios utilizing this classifier:

• Supervised Baseline (Upper Bound): In this scenario, the model was trained
using 70% of the preprocessed dataset. This approach represents the ideal con-
dition of abundant labeled data, serving to establish a performance benchmark
regarding maximum achievable Recall and Precision;

• Active Learning Simulation: To simulate a resource-constrained environment,
the model was initialized with a minimal seed of 20 balanced samples (10 be-
nign and 10 attacks). An Uncertainty Sampling strategy was then employed to
iteratively query the oracle for the labels of the most ambiguous instances. The
simulation was conducted for 100 query iterations to test the hypothesis that high
detection rates can be achieved with minimal human labeling effort.

3.3 CASE STUDY II: APPLICATION LAYERATTACKS (WEBBRUTE
FORCE)

The application-layer threat detection employs Random Forest to handle complex,
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non-linear attack patterns. This supervised baseline evaluates the CIC-IDS2017 Thurs-
day dataset for identifying multifaceted web attacks such as Brute Force, XSS, and SQL
Injection camouflaged in normal web traffic.

To facilitate binary classification, a rigorous data preprocessing phase was executed
to consolidate the specific attack labels. The primary threat analyzed was the Web At-
tack – Brute Force, involving automated attempts to guess passwords via HTTP POST
requests, which was mapped to the positive class (Attack). To create a comprehen-
sive threat profile, instances of XSS and SQL Injection were also included in this class.
Conversely, normal web browsing traffic was mapped to the negative class (Benign).

Crucially, to prevent the model from learning trivial artifacts or ”memorizing” specific
network entities, a strict feature selection process was applied. Non-numeric identifiers
such as Flow ID, Source IP, Destination IP, and Timestamp were explicitly removed.
This ensures that the classification is based solely on the behavioral metrics of the traffic
(e.g., flow duration, packet size) rather than on specific IP addresses or the time of day
the attack occurred, mitigating the risk of temporal bias.

Regarding the modeling strategy, strict measures were taken to avoid data leakage.
The dataset was split into training (70%) and testing (30%) sets using stratified sampling
before any normalization was applied. The StandardScaler was fitted exclusively on the
training partition and then applied to the test partition. This guarantees that the model
remained completely blind to the statistical distribution of the test set during the training
phase.

Given the nature of the data, the Random Forest (RF) classifier was selected as the
core algorithm. This choice is justified by its proven capability to handle complex and
heterogeneous datasets common in intrusion detection scenarios [44]. Recent studies
demonstrate that this algorithm offers high accuracy, robustness against overfitting, and
excellent generalization capacity, particularly in cybersecurity environments targeting
web vulnerabilities [45]. Additionally, Random Forest provides native interpretability
through Feature Importance analysis, allowing for a deeper understanding of the factors
characterizing an attack [46].

Finally, the validation protocol was replicated to ensure methodological consistency.
The supervised baseline established the performance ceiling, while the Active Learning
simulation—utilizing a minimal seed of 20 samples and 100 query iterations—verified if
efficiency gains persist even when applying a non-linear model to the nuanced patterns
of web traffic.

3.4 CASE STUDY III: POST-AUTHENTICATION ANOMALIES (LAT-
ERAL MOVEMENT)

This study focused on the detection of Lateral Movement and Insider Threats using
the Los Alamos National Laboratory (LANL) dataset. Unlike the previous scenarios,
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this dataset represents a significant challenge as it is strictly unsupervised, containing
millions of user-computer authentication events without any explicit indication of mali-
cious activity. This characteristic reflects the real-world reality of most SOCs, where
the vast majority of available data remains unclassified.

Given the raw nature of the logs, extensive feature engineering was performed to
capture behavioral context rather than simple connection statistics. The process in-
volved the derivation of novelty metrics, specifically a boolean flag indicating whether a
user was accessing a specific computer for the first time in the recorded history, which
serves as a strong indicator of lateral movement. Additionally, frequency metrics were
calculated to identify bursts of activity by counting the number of logins per user and
per computer within fixed time windows. To address the highly skewed nature of net-
work traffic, where legitimate automated processes can generate thousands of events,
a logarithmic transformation (log(1 + x)) was applied to all frequency features. This
normalization was crucial to prevent the anomaly detection model from being biased
towards high-volume but benign machine behavior [47].

Due to the absence of ground truth labels, a supervised approach was not initially
feasible, leading to the implementation of a two-stage hybrid architecture. The first
stage employed the Isolation Forest algorithm [48] for initial anomaly detection. Unlike
distance-basedmethods that require heavy computation, Isolation Forest efficiently iso-
lates anomalies by randomly partitioning the feature space. This characteristic makes
it particularly suitable for high-dimensional datasets with large volumes of data, where
anomalies are defined as few and distinct instances. Consequently, the model was
trained on the entire dataset to assign anomaly scores to millions of events, effectively
filtering the data to isolate the top 1% most suspicious outliers.

Subsequently, an Active Learning module was applied to the filtered anomalies to
mitigate the false positive rate inherent in unsupervised methods, where unusual but
legitimate behavior is often flagged. In this refinement phase, a human analyst acted
as an oracle to label a small subset of 30 samples based on their behavioral context.
This allowed the model to learn the distinction between true lateral movement attacks,
such as first access to critical servers at unusual hours, and legitimate administrative
tasks, enabling the automatic classification of the remaining alerts.

3.5 PERFORMANCE EVALUATION AND METRICS
Given the diverse nature of the experimental scenarios, which encompass both su-

pervised and unsupervised learning paradigms, a comprehensive evaluation frame-
work was adopted. This approach was designed to assess not only the predictive
power of the models but also their operational efficiency, addressing the dual goal of
maintaining high detection capability while minimizing human effort and computational
resources.
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For the experiments involving the CIC-IDS2017 dataset, where ground truth labels
were available, the evaluation centered on the classifier’s ability to distinguish benign
traffic from specific attack vectors. In this context, performance was quantified using
standard metrics derived from the confusion matrix [26]. Specifically, Recall (or sen-
sitivity) was prioritized as the primary measure of success. In cybersecurity, the cost
of missing an attack is often higher than that of a false alarm; therefore, maximizing
the detection rate of actual threats is paramount to minimizing security breaches. How-
ever, relying solely on recall can be misleading if the model generates excessive false
alarms. To address this, Precision and the F1-Score were also evaluated to ensure a
balanced assessment, guaranteeing that the detection system remains operationally
viable without overwhelming analysts with noise.

Beyond traditional predictive metrics, the study introduced a comparative analysis
of efficiency. The labeling cost was evaluated by contrasting the massive volume of
data required to train the baseline supervised models against the minimal query budget
used in the Active Learning approach. This comparison serves to directly validate the
hypothesis that intelligent sampling strategies can drastically reduce the human effort
involved in dataset annotation.

In the case of the unsupervised LANL dataset, where prior labels were absent, tra-
ditional metrics such as accuracy were not applicable during the initial detection phase.
Consequently, the evaluation strategy shifted towards a qualitative validation of the
anomalies identified by the Isolation Forest algorithm. This process involved analyz-
ing the statistical divergence between events classified as normal and those flagged
as anomalous, verifying whether the model successfully isolated distinct behavioral
patterns consistent with lateral movement, such as login frequency and access times.
Furthermore, the efficacy of the Active Learning refinement was assessed by its ability
to filter FPs, effectively measuring the reduction in alert volume that a human analyst
would need to investigate, thereby quantifying the operational gain of the proposed
hybrid architecture.
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4
RESULTS AND DISCUSSION

This chapter presents the experimental results obtained from the three case studies.
The analysis focuses on quantifying the trade-off between detection performance and
labeling effort, comparing the proposed Active Learning approach against traditional
Supervised baselines. Furthermore, the computational viability of the models for real-
time application is assessed. Finally, a critical discussion interprets these findings in
light of the research objectives and existing literature.

4.1 CASE STUDY I: INFRASTRUCTURE LAYER (SSH/FTP BRUTE
FORCE)

In this scenario, the detection of volumetric attacks against network protocols was
evaluated using Logistic Regression.

4.1.1 Supervised Baseline Performance
The initial analysis focused on the supervised detection of volumetric attacks (SSH

and FTP Brute Force) using the Tuesday capture from the CIC-IDS2017 dataset. The
combined dataset comprised a total of 975,827 network flows, exhibiting a severe class
imbalance typical of real-world environments: legitimate traffic (BENIGN) represented
98.6% of the data, while attack instances (FTP-Patator, SSH-Patator) accounted for
only 1.4% (13,835 flows).

Regarding the data preprocessing outcomes, the cleaning phase successfully iden-
tified and mitigated numerical instability in specific features. Notably, Flow Bytes/s
and Flow Packets/s contained 701 instances of null (NaN) or infinite values. These ar-
tifacts, resulting from flows with zero duration, were sanitized by imputation, ensuring
the stability of the mathematical model for the training phase.

Subsequently, the baseline performance was established using the Logistic Regres-
sion model. Trained on 70% of the data (Ntrain ≈ 683, 000) with class weighting enabled
(class_weight='balanced'), the model produced the results detailed in Table 4.
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Table 4: Performance Metrics for Logistic Regression (Infrastructure Layer)

Class Precision Recall F1-Score

Benign (0) 1.00 0.98 0.99
Attack (1) 0.47 0.99 0.64

The performance analysis reveals a clear strategic trade-off prioritized by the Logis-
tic Regression baseline. Primarily, the model achieved Maximized Safety, evidenced
by a near-perfect Recall of approximately 99.8% for the Attack class.

To visually corroborate these findings, Figure 7 presents the Confusion Matrix gen-
erated from the test set. The graphical representation explicitly validates the results,
as detailed below.

Figure 7: Confusion Matrix for the Logistic Regression Baseline (Infrastructure Layer).

Based on the quadrant analysis of the matrix, three critical observations can be
drawn regarding the model’s operational behavior:

• High Detection Rate: The bottom-right quadrant shows that 4,143 brute force
attempts were correctly identified;

• Minimal Missed Attacks: Crucially, the bottom-left quadrant (FN) indicates only
8 missed attacks. In a dataset with over 4,000 malicious instances, missing only
8 demonstrates the model’s high sensitivity to threats;
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• Operational Noise: However, the top-right quadrant reveals 4,587 FPs. This
implies that for every true attack detected, the model generated roughly one false
alarm on legitimate traffic (Precision of 0.47). While this ensures security, it cre-
ates a significant operational overhead for analysts, justifying the investigation
into more precise models or refinement techniques.

4.1.2 Active Learning Efficiency
Following the baseline evaluation, the Active Learning simulation was conducted to

assess performance under severe data constraints. Themodel, using the same Logistic
Regression architecture with class_weight='balanced', was initialized with a seed of
only 20 samples and allowed to query the oracle 100 times. This process resulted in a
final training set of only 120 labeled instances.

Despite utilizing approximately 99.98% less training data than the supervised base-
line (120 vs. 683,078 samples), the active model demonstrated a significant ability to
learn the core attack patterns. The quantitative results are detailed in Table 5.

Table 5: Performance Metrics for Active Learning (Infrastructure Layer)

Class Precision Recall F1-Score

Benign (0) 1.00 0.98 0.99
Attack (1) 0.30 0.71 0.42

To provide a visual perspective on these findings, Figure 8 illustrates the learning
trajectory, showing a steep ascent in accuracy during the initial queries. This reinforces
the efficiency of Uncertainty Sampling in rapidly acquiring knowledge. Complement-
ing this, Figure 9 presents the final Confusion Matrix, which explicitly details the oper-
ational trade-offs accepted by drastically reducing the labeling budget.
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Figure 8: Active Learning Curve (Infrastructure Layer), showing rapid performance
gains in the initial queries.

Figure 9: Confusion Matrix for the Active Learning Model (120 samples).

A joint analysis of the quantitative metrics and the graphical breakdown reveals the
following key insights:

• Detection Capability (Recall 0.71): With a minimal budget, the model success-
fully identified the majority of brute force attacks (2,963 TPs). Achieving nearly
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71% recall with such data scarcity proves that the model effectively prioritized the
most informative attack signatures;

• The Cost of Frugality (Missed Attacks): The most significant impact of using
limited data is evident in the bottom-left quadrant (FN), showing 1,188 missed
attacks. Unlike the baseline model that missed almost nothing, the active model
failed to identify approximately 29% of threats, representing the trade-off for using
99.98% less training data;

• Operational Noise (Precision 0.30): The top-right quadrant indicates 6,877 FPs.
This high number of false alarms suggests a conservative ”flag-everything” strat-
egy, which aligns with the safety-first priority in cybersecurity [6], where generating
false alarms is often preferable to missing a breach;

• Efficiency Analysis: While the model does not achieve the perfect safety of the
fully supervised baseline, it successfully creates a viable detection system with a
resource expenditure that is orders of magnitude lower, validating its value as a
rapid deployment strategy that directly addresses the challenge of high labeling
costs.

It is crucial to note that the performance gap compared to the supervised baseline
(Recall 1.00 vs. 0.71) is an expected consequence of the extreme reduction in training
data size (from≈683k to 120 samples). The Active Learning model did not ’worsen’ the
data; rather, it reached a performance ceiling limited by the minimal information budget
provided, demonstrating the efficiency of the sampling strategy in extracting maximum
value from limited interactions.

4.2 CASE STUDY II - APPLICATION LAYER (WEB ATTACKS)
The application-layer threat detection employs Random Forest to handle complex,

non-linear attack patterns. This supervised baseline evaluates the CIC-IDS2017 Thurs-
day dataset for identifying multifaceted web attacks such as Brute Force, XSS, and SQL
Injection camouflaged in normal web traffic.

4.2.1 Supervised Baseline Performance
The combined dataset comprised a total of 700,284 network flows. Similar to the

infrastructure scenario, the class distribution was severely imbalanced, with legitimate
traffic representing 99.7% of the data. The attack class was composed of a heteroge-
neous mix of web-based threats, includingWeb Attack – Brute Force (1,507 instances),
XSS (652), and SQL Injection (21), totaling 2,180 malicious instances.

Data preprocessing followed the established pipeline, including the removal of non-
numeric artifacts and missing values. Subsequently, the Random Forest classifier was
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trained on 70% of the data (Ntrain ≈ 490, 000) using the class_weight='balanced'
parameter to mitigate the imbalance. The model was evaluated on a test set containing
210,086 flows, yielding the quantitative results presented in Table 6.

Table 6: Performance Metrics for Random Forest (Application Layer)

Class Precision Recall F1-Score

Benign (0) 1.00 1.00 1.00
Attack (1) 1.00 0.97 0.99

The performance of the Random Forest classifier presents a distinct contrast to the
linear model used in the first case study. The confusion matrix (Figure 10) reveals two
critical insights:

• Perfect Precision (Zero False Positives): The top-right quadrant shows a value
of 0. This indicates that not a single legitimate user session was incorrectly
flagged as an attack. This exceptional precision validates the Random Forest’s
ability to model complex, non-linear decision boundaries in web traffic, effectively
eliminating operational noise;

• Robust Detection (17 False Negatives): The bottom-left quadrant indicates only
17 missed attacks out of 654. This corresponds to a Recall of 97.4%. While
slightly lower than the perfect recall of the Logistic Regression in Case I, the trade-
off for perfect precision is highly favorable in a web environment where traffic
volume is massive.
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Figure 10: Confusion Matrix for the Random Forest Baseline.

Furthermore, the interpretability analysis provided by the Random Forest algorithm
offers insight into the attack signatures. Figure 11 displays the top 10 most discrimi-
natory features. Notably, Max Packet Length and Fwd IAT Min (Forward Inter-Arrival
Time) emerged as the most critical indicators. This suggests that Web Brute Force at-
tacks are primarily distinguishable by the specific size of the request packets and the
unnatural timing between them, rather than just volume.

Figure 11: Top 10 Feature Importance for Random Forest, highlighting packet length
and timing as key attack indicators.
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4.2.2 Active Learning Efficiency
To evaluate the efficiency of the proposed method in the application layer scenario,

the Active Learning simulation was executed using the Random Forest classifier. The
model was initialized with the same constraints as the previous case study: a seed of
20 samples and a budget of 100 oracle queries, resulting in a final training set of 120
labeled instances.

The quantitative results, detailed in Table 7, demonstrate that the active learning
strategy successfully adapted to the complex patterns of web traffic even with minimal
data.

Table 7: Performance Metrics for Active Learning (Application Layer)

Class Precision Recall F1-Score

Benign (0) 1.00 1.00 1.00
Attack (1) 1.00 0.89 0.94

The learning trajectory and final classification performance are visualized in Figure
12 and Figure 13, respectively. A joint analysis of these artifacts reveals compelling
insights into the cost-benefit ratio of the approach:

• Maintained Precision (Zero False Positives): Remarkably, the active model
maintained the perfect precision of the baseline (1.00). The top-right quadrant of
the confusion matrix shows zero false alarms. This indicates that the Random
Forest, guided by uncertainty sampling, learned to be extremely selective, flag-
ging only traffic that exhibits clear attack signatures, which is ideal for minimizing
analyst fatigue;

• High Detection Capability (Recall 0.89): With only 120 samples, the model
correctly identified 583 out of 654 attacks (89%). While this represents a drop
compared to the baseline’s 97% recall, capturing nearly 90% of threats with less
than 0.03% of the training data is a significant efficiency milestone. The 71missed
attacks (FNs) suggest that the model prioritized learning the most dominant attack
patterns first;

• Efficiency Analysis: The experiment validates that Active Learning is highly
effective even for complex, non-linear web attack vectors. The model rapidly
converged to a high-performance state, proving that a massive reduction in la-
beling effort does not necessarily compromise the system’s reliability (precision),
although a trade-off in sensitivity (recall) is observed.
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Figure 12: Active Learning Curve (Application Layer), illustrating the rapid convergence
of accuracy.

Figure 13: Confusion Matrix for the Active Learning Model (Application Layer), showing
perfect precision (0 FP) and solid recall (89%), with only 71 missed attacks (FN).

4.3 CASESTUDY III - POST-AUTHENTICATIONANOMALIES (LANL)
This study addressed the challenge of detecting insider threats and lateral move-

ment in an unsupervised environment. Due to the computational constraints of pro-
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cessing the massive raw logs, a representative subset of approximately 5 million au-
thentication events was utilized for this analysis.

4.3.1 Unsupervised Anomaly Detection
The Isolation Forest algorithm was trained on the dataset to identify deviations from

normal behavior patterns without prior knowledge of attack signatures. The model was
configured with a contamination rate of 1%, resulting in the isolation of 124,716 anoma-
lous events out of the total sample.

To validate the efficacy of this unsupervised approach, a statistical comparison was
performed between the events classified as Normal and those flagged as Anomalous.
The results, visualized in Figures 14 and 15, reveal a distinct ”fingerprint” for potentially
malicious behavior:

• Novelty as a Key Indicator: The is_first_access feature was the strongest
discriminator. First-time access occurred in only 0.52% of normal traffic versus
96.4% of anomalies, validating that lateral movement is a primary risk indicator;

• Temporal Anomalies: The model identified that anomalous events showed a
tendency towards off-hours (average hour ≈ 06:38 AM), contrasting with normal
traffic centered around business hours (average hour ≈ 10:30 AM);

• The Frequency Paradox: Anomalies exhibited a lower frequency of logins per
user (≈ 43) compared to normal traffic (≈ 709). This indicates that the model
successfully distinguished between the high-volume ”noise” of automated system
accounts and the low-volume, stealthy behavior characteristic of human attackers
moving laterally.
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Figure 14: Comparison of ’First Access’ probability: Anomalies vs. Normal behavior.

Figure 15: Comparison of temporal and frequency features: Anomalous events occur
during off-hours (≈6:40 AM) and show lower user login frequency compared to normal
automated traffic (≈10:30 AM).

4.3.2 Active Learning Refinement
To mitigate the false positive rate inherent in unsupervised detection, an Active
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Learning module was applied to the pool of 124,716 isolated anomalies. In this phase,
an automated oracle simulated the decision-making of a security analyst, labeling a
seed of 20 samples and responding to 100 strategic queries based on model uncer-
tainty, totaling 120 labeled instances.

The trained model was then deployed to automatically classify the remaining unla-
belled anomalies. The results of this automated triage are summarized in Table 8.

Table 8: Automated Triage Results by the Active Learning Model (LANL)

Classification Count Percentage

High Risk (Real Attack - 1) 95,426 76.5%
Low Risk (False Positive - 0) 29,170 23.5%

These results demonstrate the critical value of the Active Learning layer. While the
unsupervised model successfully filtered the massive dataset to its most suspicious
1%, it still included a significant portion (23.5%) of events that, upon closer behavioral
inspection considering time context and frequency patterns, were deemed low risk.
The Active Learning model successfully identified and filtered out these 29,170 false
positives, reducing the analyst’s workload by nearly a quarter while maintaining focus
on the highest-risk activities.

To validate the real-time viability of the proposed hybrid architecture, a comprehen-
sive latency analysis was conducted. The total computational cost was calculated for
both normal traffic processing and the worst-case scenario (anomaly refinement).

Table 9: Computational Cost Analysis of the Hybrid Pipeline

Pipeline Stage Latency per Event (ms) Throughput (Events/sec)

Stage 1: Unsupervised Filter 0.0005 ms ≈ 2,000,000
Stage 2: Active Refinement 0.0007 ms ≈ 1,428,000
Total Latency (Worst Case) 0.0012 ms ≈ 833,000

The results demonstrate that even in the worst-case scenario, where an event is
flagged as anomalous and requires secondary classification by the Active Learning
model, the total processing time remains at approximately 1.2 microseconds. This
confirms that the addition of the Active Learning layer introduces negligible overhead,
maintaining the system’s capability to process high-throughput network traffic in real-
time.
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5
CONCLUSION

This work demonstrates that combining Unsupervised filtering with Active Learn-
ing refinement constitutes a scalable and efficient methodology for modern intrusion
detection, addressing the critical bottleneck of data labeling in an era of exponentially
growing cyber threats. The primary objective of evaluating the efficacy and efficiency
of this strategy was successfully met. Motivated by the challenge of managing mas-
sive volumes of unlabeled log data, the study confirmed that intelligent data selection
significantly reduces the human cost of labeling without compromising detection per-
formance.

5.1 SYNTHESIS OF RESULTS
The experimental outcomes provided strong evidence supporting the initial hypothe-

sis that Active Learning can effectively optimize intrusion detection systems. The study
successfully addressed each specific objective:

• Addressing Real-Time Viability (Objective 1): The analysis confirmed that the
proposed architecture operates with negligible latency, validating its suitability
for high-throughput network environments where real-time processing is manda-
tory. The empirical measurement of the most complex scenario (hybrid pipeline)
confirmed that the system introduces no perceptible delay to authentication pro-
cesses;

• Validation via Comparative Analysis (Objectives 2 & 3): The comparison be-
tween paradigms revealed distinct outcomes depending on the attack vector;

– In the Web Attack scenario, the active model rapidly converged to perfor-
mance levels closely mirroring the supervised baseline, demonstrating high
efficiency;

– In the Infrastructure scenario, a strategic trade-off was identified: while the
active model successfully learned the core attack signatures with minimal
data, a slight reduction in recall compared to the baseline highlights that
Active Learning serves primarily as a rapid prototyping strategy, which can
be further refined with incremental labeling.
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• Reduction of Human Effort (Objective 4): This was the most significant contri-
bution. Across all case studies, the methodology demonstrated that robust clas-
sifiers could be trained using a minimal fraction of the data required by traditional
methods. By reducing the labeling requirement by over 99%, the approach proved
to be a scalable solution for the critical bottleneck of manual data annotation;

• Effectiveness in Unsupervised Contexts (Case Study III): Complementing the
supervised scenarios, the hybrid architecture applied to the LANL dataset proved
effective in unsupervised domains. The combination of Isolation Forest filtering
with Active Learning refinement successfully isolated behavioral anomalies (such
as lateral movement) while filtering out a significant volume of false positives,
streamlining the workflow for security analysts.

5.2 LIMITATIONS
Despite the positive results, the study identified practical limitations that must be

acknowledged. A significant challenge observed during the execution of Case Study
III (LANL) was the cognitive load on the Oracle. Although Active Learning reduces the
quantity of labels, it increases the complexity of the decision-making process.

In the experiment, acting as the Oracle required intense manual analysis of con-
text (time, frequency, user history) for each query to distinguish between a true lateral
movement and a false positive. This confirms that while the method reduces the vol-
ume of work, it demands high expertise from the analyst. Furthermore, the experiments
were conducted as ”offline simulations,” where the Oracle’s response time was not fac-
tored into the learning loop speed, which could be a bottleneck in a real-time training
scenario.

To advance the findings of this research, several directions for future investigation
are recommended. First, the integration of Cost-Sensitive Active Learning could be
explored by incorporating the ”difficulty” or ”time cost” of labeling into the query strat-
egy. This would enable the model to better balance information gain against the effort
required from the analyst.

Furthermore, developing a pipeline for Online Learning Integration is crucial for real-
world deployment. Future studies should focus on models that update their parameters
continuously in a streaming environment, rather than in batch simulations, to test re-
silience against concept drift in live network traffic.
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