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ABSTRACT

Source code recovery from intermediate representations, such as bytecode or binary
code, plays a fundamental role in reverse engineering, especially in scenarios where
the original source is unavailable. Although Python is typically referred to as an inter-
preted language, its execution involves compilation into bytecode, an intermediate form
executed by the Python Virtual Machine (PVM). This process removes high-level infor-
mation and introduces challenges for accurate decompilation. Traditional tools often
produce code that is syntactically valid but semantically limited or difficult to interpret.

In recent years, Large LanguageModels (LLMs) based on transformer architectures
have shown promising results in tasks involving source code understanding, genera-
tion, and even binary analysis. This study investigates the application of LLMs to the
task of recovering Python source code from bytecode, an area still largely unexplored
in the literature. Through a systematic review of related work, the research identifies a
gap in the use of LLMs for Python bytecode decompilation.

This work proposes an approach centered on modern LLMs. The hypothesis is that
such models can assist in both syntactic and semantic reconstruction of the original
source code. The expected contributions include evaluating the success rate of this
approach and offering new insights into the intersection between machine learning and
reverse engineering.

Keywords: Decompilation, LLM, Python, Bytecode, Source Code Recovery.
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1
INTRODUCTION

1.1 CONTEXT AND MOTIVATION
Decompilation, the process of recovering high-level source code from a low-level

representation such as binary or bytecode, is one of the pillars of reverse engineer-
ing [1]. This process is indispensable for a multitude of software engineering tasks,
including security analysis, malware detection, vulnerability discovery, and the mainte-
nance of legacy systems where the original source code is unavailable [2,3]. By trans-
lating machine-readable code into a human-readable format, decompilation empowers
developers and security analysts to comprehend program behavior, identify potential
threats, and facilitate software migration and interoperability [4].

While decompilation is a well-established field for compiled languages like C/C++, its
application to dynamic languages such as Python presents unique challenges. Python’s
execution model relies on compiling source code into bytecode, a platform-independent
intermediate representation that is then executed by the Python Virtual Machine (PVM).
Although tools exist to decompile Python bytecode, they often face significant limita-
tions. The compilation process inherently discards crucial semantic information, in-
cluding original variable names, comments, and high-level syntactic structures [5, 6].
Consequently, the output of traditional decompilers is frequently syntactically valid but
semantically obscure, producing code that is difficult to read, maintain, or verify for cor-
rectness. These outputs often contain what are termed “decompilation quirks”, that is,
differences from the original code that reduce readability and may even alter program
behavior [5].

In recent years, the rapid advancement of Large Language Models (LLMs) has
demonstrated remarkable capabilities in understanding, generating, and translating
both natural and programming languages [7]. This progress has opened a new fron-
tier for decompilation. By framing decompilation as a translation task, from the “lan-
guage” of bytecode to the “language” of high-level source code, researchers have be-
gun to explore the potential of neural networks and, more recently, LLMs to bridge this
gap [4, 8]. Studies have shown that LLMs can significantly outperform traditional de-
compilers in generating more readable and executable code for languages like C [4]
and WebAssembly [3], and can even be used to refine the imperfect output of existing
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tools [5].

1.2 PROBLEM STATEMENT
The primary challenge in decompiling Python bytecode is the significant loss of se-

mantic information during the initial compilation phase. Traditional decompilers can
reconstruct control flow and basic operations, but they struggle to recover the abstrac-
tions that make source code comprehensible. Furthermore, they often lack long-term
consistency, as changes to the bytecode in new Python releases can break existing
decompilers, requiring significant effort to maintain compatibility [9]. The resulting code
is often populated with generic variable names (e.g., var_1, var_2), convoluted control
structures, and lacks the idiomatic expressions a human programmer would use. This
“semantic gap” between the decompiled output and the original source code hinders
effective program comprehension and subsequent analysis.

While recent research has demonstrated the potential of LLMs in binary code un-
derstanding [7,10], the majority of these studies focus on low-level machine code (e.g.,
x86, ARM) rather than the bytecode of high-level dynamic languages. Furthermore,
there is a need to systematically evaluate the performance of current state-of-the-art
models. This work aims to address that gap by exploring how these advanced mod-
els can be leveraged to produce high-fidelity source code that is not only syntactically
correct but also semantically close to the original.

1.3 OBJECTIVES
The primary objective of this research is to investigate and apply LLMs for recovering

original Python 3.13 source code from bytecode, exploring the potential of thesemodels
as alternatives to conventional decompilers.

1.4 CONTRIBUTIONS
This work contributes to the field of software engineering and reverse engineering

by:

• Proposing a novel, automated architecture for decompilation that integrates Large
LanguageModels with theModel Context Protocol to create an iterative “generate-
test-refine” loop.

• Establishing a scalable methodology for constructing a high-quality, ground-truth
dataset of Python functions and their corresponding bytecode, enriched with AI-
generated unit tests for rigorous functional validation.

• Providing an empirical evaluation of the capabilities of a state-of-the-art LLM in
the specific domain of Python bytecode decompilation, addressing a gap in the
current literature.
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1.5 RESEARCH QUESTION AND HYPOTHESIS

1.5.1 Research Question
This undergraduate thesis seeks to answer the following central question:

Can large languagemodels (LLMs) effectively support the recovery of Python
3.13 source code from bytecode, generating syntactically valid and seman-
tically coherent outputs that approximate the original source?

1.5.2 Hypothesis
This research is based on the hypothesis that LLMs can significantly contribute to

the decompilation of Python bytecode by assisting in both syntactic reconstruction and
semantic understanding of the original code. By exploring this hypothesis, we aim not
only to evaluate the technical feasibility of the approach but also to offer a new perspec-
tive on the intersection between machine learning and software reverse engineering.
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2
COMPILATION

This section presents the theoretical basis of the compilation process, focusing on
the Python programming language.

2.1 DEFINITION
A compiler is a language processor which takes as input a code written in a program-

ming language, called source code, and translates it into another language, usually a
lower-level one, as shown in Figure 1 below, while also signaling to the user any er-
rors detected during this process. Both the source code and the generated code may
belong to different programming languages [11].

Compiler

Source
Program

Target 
Program

Figure 1: Compilation process. Source: [11].

The compiler can output several types of target programs, such as assembly code,
intermediate code, machine code or even error messages to the user [11]. If the com-
piler’s output is an executable program, the user can run it to process input and produce
outputs, as shown in Figure 2.

Target
Program

Input Output

Figure 2: Running the target program. Source: [11].
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However, there is another type of language processor, called interpreters. These
are the ones used by Python. What they do is, instead of generating a target program,
they execute directly the operations in the source code on inputs provided by the user,
as demonstrated in Figure 3 [11].

Interpreter
Input

Source Program
Output

Figure 3: An interpreter. Source: [11].

The compiled target software is usually faster and more efficient than the interpreted
program at mapping inputs to outputs. On the other hand, the process of interpretation
is generally better at giving feedback to the user about errors in the source code, due
to its ability to execute the code line by line [11].

To leverage the advantages of both approaches, a hybrid model was developed
in which the source code is first translated into an intermediate representation called
bytecode. This bytecode is then executed by virtual machines, as shown in Figure
4 [11].

Virtual
MachineInput

Intermediate Program
Output

Translator

Source
Program

Figure 4: A hybrid compiler. Source: [11].

The compilation process is generally divided into two main stages: analysis and
synthesis. The analysis stage is responsible for breaking the program down into smaller
parts and generating an intermediate representation of the code, often in the form of
an abstract syntax tree (AST) [11]. The synthesis stage, in turn, is responsible for
building the final code from this intermediate representation, a task that involves more
specialized techniques for code generation and optimization [11]. Both stages will be
explored in more detail in the following paragraphs.

The analysis stage, also called front end of the compiler, as mentioned before, di-
vides the source code into smaller pieces and checks its content, checking whether it
follows the syntax and grammar rules, as well as its semantics. This phase also col-
lects information from the source code, storing it in a table called symbol table, that
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will be used in the synthesis stage, generating in the end both the symbol table and a
intermediate representation of the source program [11].

The synthesis stage, also called back end of the compiler, however, is responsible
for generating the final target program, using the outputs from the analysis stage, the
intermediate code and the symbol table [11].

The whole process of compilation is constituted of several phases, which every
phase transforms one representation of the original program into another. Figure 5
below shows the phases of a typical compiler [11].

Lexical Analyzer

Character Stream

Token Strem

Syntax Analyzer

Symbol Table Semantic Analyzer

Syntax Tree

Syntax Tree

Intermediate Code Generator

Machine-Independent
Code Optimizer

Intermediate Representation

Code Generator

Intermediate Representation

Machine-Dependent
Code Optimizer

Target-Machine Code

Target-Machine Code

Figure 5: Phases of a compiler. Source: [11].
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2.2 INTERPRETATION
While the fundamental concepts of compilation and interpretation apply broadly, the

remainder of this chapter focuses on their specific implementation, exemplified using
the Python programming language. This contextualization is essential to understand
the mechanisms of bytecode generation and execution that this work aims to reverse.

Although Python is commonly referred to as an interpreted language, its execution
model involves a preliminary compilation step [12]. Instead of generating a native binary
executable, the Python source code is compiled into an intermediate representation
known as bytecode [13]. This bytecode is then executed at runtime by the Python
Virtual Machine (PVM), a core component of the language’s runtime system.

The PVM operates according to a stack-based bytecode interpretation model [11],
where an interpreter traverses the program’s intermediate representation and directly
executes its instructions. In this model, Python’s bytecode acts as an abstract machine
language tailored specifically for the PVM. While this design favors portability and sim-
plicity, it generally results in lower performance compared to execution of native ma-
chine code. Even so, the PVM remains essential to Python’s architecture, faithfully
enacting the language’s semantics during execution.

2.3 BYTECODE
Bytecode constitutes an intermediate form generated during Python’s compilation

process, designed to be efficient and portable for execution by the PVM [14]. Rather
than executing the human-readable source code line by line, the interpreter works
with this lower-level sequence of platform-independent instructions. These instruc-
tions, composed of operation codes (opcodes) and their arguments, can be stored in
.pyc files, enabling faster startup times and reducing the need to recompile unchanged
source files [15].

Opcodes represent the atomic operations carried out by the PVM, such as loading
variables, performing arithmetic, or controlling program flow [16]. In CPython, each
bytecode instruction typically consists of one byte for the opcode and one byte for its
argument. Since Python 3.6, the interpreter uses a wordcode format where each in-
struction occupies exactly two bytes, a design choice that improves performance and
simplifies the interpreter loop by standardizing the instruction size [17].

For instance, consider the following simple Python code:

1 def hello_world():
2 print("Hello World")
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The corresponding bytecode, generated using the dis [18] library, for Python 3.13
might appear as:

1 4 RESUME 0
2

3 5 LOAD_GLOBAL 1 (print + NULL)
4 LOAD_CONST 1 ('Hello World')
5 CALL 1
6 POP_TOP
7 RETURN_CONST 0 (None)

In this output, each line includes the instruction offset, the opcode, and its argument.
The opcodes, such as RESUME, LOAD_GLOBAL, and CALL, represent the concrete
operations the PVM performs to execute the program.

It’s important to note that bytecode is specific to the Python version that generated
it. Different Python versions may produce different bytecode for the same source code.
For example, the bytecode below was generated for Python 3.10:

1 5 0 LOAD_GLOBAL 0 (print)
2 2 LOAD_CONST 1 ('Hello World')
3 4 CALL_FUNCTION 1
4 6 POP_TOP
5 8 LOAD_CONST 0 (None)
6 10 RETURN_VALUE

By comparing both of them, it is possible to see that they are not identical, even
though they were generated from the same source code. This version dependency is
a crucial consideration when working with Python bytecode, and consequently, when
developing tools for its analysis or decompilation. Also, for this reason decompiling
tools need to be updated frequently to keep up with the latest Python versions.

2.4 SYNTACTIC TREE
AnAbstract Syntax Tree (AST) is a tree-shaped representation of the syntactic struc-

ture of source code, widely used in the design of compilers and interpreters for various
programming languages. In the context of Python, the AST is built by the parser dur-
ing the compilation process [16]. It captures the essential syntactic and structural ele-
ments of the code, using nodes to represent constructs such as operations and assign-
ments [19]. This intermediate representation is crucial for the compiler to traverse the
tree and subsequently generate the bytecode executed by the Python Virtual Machine
(PVM). A successfully constructed AST also indicates that the source code has passed
the initial syntax validation.
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For example, consider the following simple Python code:

1 print("Hello World")

The corresponding AST, generated using Python’s built-in ASTmodule, can be seen
in Appendix A.

Visually, this hierarchy can be represented as a tree where the Module is the root,
containing an Expr (expression) node, which in turn contains a Call node representing
the function invocation. This structure is illustrated in Figure 6.

Module

Expr

Call

Name
(print)

Constant
(Hello World)

Load

Body

Value

Func Args

Ctx

Figure 6: AST representation of the code print("Hello World").

2.5 DECOMPILATION
Decompilation is, essentially, the reverse process of compilation: it takes binary

code, or other compiled types of code, that can be executed by the machine and
converts it back into a higher-level source code form that humans can read and un-
derstand [4, 8]. This process is fundamental for analyzing software when the original
source code is unavailable, such as in proprietary systems, legacy code, firmware, or
malware [8,20]. Decompilation is challenging because, during compilation, much of the
high-level structure and naming information is lost [4,20].
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Traditional decompilation tools operate by attempting to reverse the synthesis phase
of compilation. This process typically involves constructing a Control FlowGraph (CFG)
from the bytecode to identify basic blocks and execution paths. Algorithms then ana-
lyze this graph to detect patterns that correspond to high-level control structures, such
as loops and conditionals, effectively structuring the code. Data flow analysis is also
performed to track variable usage and lifespan.

In the specific context of Python, tools like uncompyle6 [21, 22] translate Python
bytecode back into equivalent Python source code. Instead of simply treating the byte-
code as a linear stream, uncompyle6 uses compiler technology to create a parse tree
from the instructions, where nodes at the upper levels resemble a Python Abstract
Syntax Tree (AST). This approach allows the tool to classify and understand the code
structure effectively, reconstructing high-level constructs across a wide range of Python
versions, from 1.0 to 3.8 [22].

In the following snippet is presented a Python source code that was compiled using
Python 3.8 and then decompiled back to source code using uncompyle6.

The source code before compilation is shown in Algorithm 1:

1 def equated_monthly_installments(
2 principal: float, rate_per_annum: float, years_to_repay: int
3 ) -> float:
4 if principal <= 0:
5 raise Exception("Principal borrowed must be > 0")
6 if rate_per_annum < 0:
7 raise Exception("Rate of interest must be >= 0")
8 if years_to_repay <= 0 or not isinstance(years_to_repay , int):
9 raise Exception("Years to repay must be an integer > 0")

10 rate_per_month = rate_per_annum / 12
11 number_of_payments = years_to_repay * 12
12

13 return (
14 principal
15 * rate_per_month
16 * (1 + rate_per_month) ** number_of_payments
17 / ((1 + rate_per_month) ** number_of_payments - 1)
18 )
19

20 if __name__ == "__main__":
21 import doctest
22 doctest.testmod()

Algorithm 1: Source code before compilation.
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The decompiled code after compilation is shown in Algorithm 2.

1 def equated_monthly_installments(principal , rate_per_annum , years_to_repay)
:

2 if principal <= 0:
3 raise Exception("Principal borrowed must be > 0")
4 elif rate_per_annum < 0:
5 raise Exception("Rate of interest must be >= 0")
6 raise years_to_repay <= 0 or isinstance(years_to_repay , int) or

Exception("Years to repay must be an integer > 0")
7 rate_per_month = rate_per_annum / 12
8 number_of_payments = years_to_repay * 12
9 return principal * rate_per_month * (1 + rate_per_month) **

number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1)
10

11 if __name__ == "__main__":
12 import doctest
13 doctest.testmod()

Algorithm 2: Decompiled code after compilation.

In this example, the decompiled output closely mirrors the structure of the origi-
nal source code, illustrating the general effectiveness of the decompilation process.
However, notable discrepancies exist. These include the substitution of multiple if
statements with elif constructs and the complete omission of type hints in the function
signature. More critically, the logic for raising exceptions is malformed; the decom-
piler incorrectly coalesced the conditional check and the exception instantiation into
a single statement, rendering the code functionally incorrect. These deviations un-
derscore the inherent challenges of decompilation, particularly in preserving high-level
annotations and accurate control flow semantics. This illustrates that these determin-
istic approaches have limitations. They often generate code that, while functionally
equivalent, is difficult to understand [4,8]. They struggle to infer idiomatic constructs or
meaningful variable names, often resorting to generic identifiers (e.g., var_1). Modern
approaches are being developed to produce more readable and accurate decompiled
code [3,4,8,20]. There are no more deterministic and validated decompilers for Python
specifically for versions beyond 3.8.
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3
LARGE LANGUAGE MODEL

In recent years, Large Language Models (LLMs) have become central to the field
of Natural Language Processing (NLP), enabling state-of-the-art performance in tasks
such as translation, summarization, code generation, and even binary analysis. Their
success is driven by a convergence of three main factors: large-scale datasets, pow-
erful neural architectures, and specialized computing infrastructure.

3.1 HISTORICAL CONTEXT AND DEFINITION
The concept of language modeling has evolved significantly over the past decades.

Early models were based on statistical methods such as n-grams, which estimate the
probability of the next word based on a fixed-size window of previous tokens. These
models suffered from data sparsity and lacked the ability to capture long-range depen-
dencies.

The introduction of Recurrent Neural Networks (RNNs), and later Long Short-Term
Memory networks (LSTMs) [23], addressed these limitations by maintaining a dynamic
internal state that could, in principle, capture arbitrarily long sequences. However, these
architectures struggled with parallelization and often encountered vanishing gradient
problems.

A major breakthrough occurred with the introduction of the Transformer architec-
ture [24], which replaced recurrence with a novel self-attention mechanism. This al-
lowed for more efficient training and better modeling of global dependencies in text.
These advances culminated in the emergence of LLMs such as BERT [25], GPT [26,
27], and LLaMA [28], ushering in the modern era of generative AI.

LLMs are deep neural networks, typically based on the Transformer architecture,
and trained on massive datasets composed of natural language and source code.
These models contain billions or even trillions of parameters [27, 28], which are ad-
justed through optimization processes to capture statistical relationships in text and
code.

3.2 LANGUAGE MODELING AS A FORMAL PROBLEM
Language modeling is the task of assigning a probability to a sequence of tokens.

A token represents the fundamental unit of text or code (e.g., a word, subword, or
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character) that a language model processes. Formally, given a sequence of tokens
x = (x1, x2, . . . , xT ), a language model estimates the joint probability of the sequence
as the product of conditional probabilities:

P (x) =
T∏
t=1

P (xt | x1, . . . , xt−1) =
T∏
t=1

P (xt | x<t) (1)

This formulation is known as causal language modeling and underlies autoregres-
sive models such as GPT. The goal during training is to learn a function that, given a
context x<t, accurately estimates the probability of the next token xt.

For instance, after reading “The cat sat on the”, a well-trained model might assign
high probability to “mat” and low probability to “banana”. This predictive capability en-
ables LLMs to generate coherent text, answer questions, and complete code based on
context [29].

Tokens, the fundamental units of processing, are usually obtained through subword
tokenization algorithms such as Byte Pair Encoding (BPE) [30]. These techniques strike
a balance between vocabulary size and expressiveness, allowing LLMs to handle rare
or unseen words effectively.

3.3 ARCHITECTURE AND ATTENTION MECHANISM
The Transformer architecture [24] underpins nearly all modern LLMs. It introduces

a paradigm shift from recurrent processing to a fully attention-based mechanism, allow-
ing the model to consider all positions in the input simultaneously, regardless of their
distance. This not only improves performance but also enables efficient parallelization
during training.

At its core, the Transformer relies on the self-attentionmechanism, which computes
how each token in a sequence relates to every other token. The central equation for
scaled dot-product attention is:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

where:

• Q (queries), K (keys), and V (values) are linear projections of the input embed-
dings,

• dk is the dimensionality of the keys,

• softmax ensures that the resulting attention weights sum to 1.

This equation captures how much attention each token should pay to every other
token, allowing the model to dynamically weigh contextual relevance during inference.
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3.4 MODEL VARIANTS IN TRANSFORMER ARCHITECTURES
Transformers can be configured in three main architectural variants, depending on

the nature of the task [31,32]:

• Encoder-only: These models are ideal for classification or embedding tasks. A
canonical example is BERT [25], which is trained using Masked Language Model-
ing (MLM) and performs well on sentence classification and question answering.

• Decoder-only: These models generate sequences in an autoregressive manner,
predicting the next token based solely on previously generated ones. The GPT
family [27] is the most prominent example. This setup is particularly well-suited
for text generation, code completion, and chat-based applications.

• Encoder-Decoder: Also known as sequence-to-sequence models, this structure
uses the encoder to digest the input and the decoder to generate output condi-
tioned on the encoded context. Models such as T5 [31] and BART [32] fall into this
category. They excel at tasks like translation, summarization, and style transfer.

Each architectural choice brings trade-offs in terms of efficiency, flexibility, and task
suitability. Decoder-only models dominate in generative AI applications due to their
simplicity and effectiveness in autoregressive tasks. Encoder-decoder models, on the
other hand, remain the most effective when rich input-output mappings are needed,
such as in translation and structured generation.

3.5 TRAINING: PRETRAINING AND OPTIMIZATION OBJECTIVE
The training of LLMs typically begins with a pretraining phase, in which the model

is exposed to massive corpora of text and code. During this stage, learning is driven
by self-supervised learning, where the model learns to predict parts of the input without
requiring explicit human labels [25,27].

A common example of this is next-token prediction. For instance, given the se-
quence:

The cat sat on the _

the model must infer that “mat” is the most likely missing token. Over time, this
trains the network to internalize rich statistical representations of language.

The loss function used in this context is the cross-entropy loss, which measures the
distance between the predicted probability distribution and the true (one-hot encoded)
token. Mathematically, it is defined as:

L = −
T∑
t=1

logP (xt | x<t) (3)
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where xt is the ground-truth token at position t, and P (xt | x<t) is the probability
assigned by the model.

Minimizing this loss encourages the model to assign higher probabilities to correct
tokens, reinforcing its ability to model realistic sequences.

3.6 FINE-TUNING AND ADAPTATION
After pretraining, LLMs can be further adapted to specific tasks or domains using

fine-tuning. This phase involves training on a narrower dataset, often with supervision,
to improve performance on tasks like legal text processing, biomedical information ex-
traction, or even bytecode analysis, or other specialized applications.

In many scenarios, retraining the entire model is computationally expensive. To miti-
gate this, Parameter-Efficient Fine-Tuning (PEFT) techniques have emerged, including:

• LoRA (Low-Rank Adaptation) [33]: Introduces trainable low-rank matrices into
existing weight layers, significantly reducing the number of parameters that need
to be updated.

• QLoRA [34]: Extends LoRA to quantized models (e.g., 4-bit weights), making
fine-tuning feasible even on limited hardware.

These methods enable users to customize large models at low cost, without sacri-
ficing quality.

3.7 REINFORCEMENTLEARNINGFROMHUMANFEEDBACK (RLHF)
An increasingly important step in aligning LLMs with human values and preferences

is Reinforcement Learning from Human Feedback (RLHF) [35,36].
The RLHF pipeline typically involves:

1. Supervised Fine-tuning (SFT): The model is trained on human-labeled exam-
ples, such as preferred completions or dialogues.

2. Reward Modeling: A separate model is trained to predict human preferences
by ranking alternative outputs, creating a reward signal that reflects human judg-
ment.

3. Reinforcement Learning: The base model is fine-tuned using reinforcement
learning to optimize its behavior, maximizing the reward signal derived from the
reward model.

This process has been instrumental in the development of assistant-style models
such as ChatGPT, where alignment with user intent, safety, and helpfulness is essential.
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Unlike standard fine-tuning, which optimizes for task performance, RLHF focuses
on preference alignment, enabling more nuanced control over LLM behavior.

3.8 PROMPTING AND CONTEXT MANAGEMENT
Once pretrained, LLMs operate in an inference mode where they generate outputs

conditioned on a prompt, a sequence of tokens that serves as the input. Since LLMs
are typically decoder-only architectures, they generate text auto-regressively: token by
token, based solely on the provided sequence of preceding tokens [27].

The prompt directly determines the model’s behavior. For example, providing the
instruction:

Translate the following English sentence to French: "I love science."

leads the model to produce “J'aime la science.”.
However, the model’s ability to process this input is constrained by a fixed limit

known as the context window, explained in detail in the following section.

3.9 CONTEXT WINDOW AND LIMITATIONS
Large Language Models (LLMs) operate within a maximum context length, mea-

sured in tokens (e.g., 2k, 8k, 32k), which constrains the volume of information the model
can process in a single inference step. Furthermore, standard LLMs are stateless and
lack persistent memory, meaning they cannot retain information across separate inter-
actions once the context window is reset.

When an input exceeds this context limit, tokens are typically truncated (often from
the beginning of the sequence) which can lead to loss of critical information and incoher-
ent model behavior. Consequently, effective prompt design and context management
are essential strategies in practical applications [37].

3.10 PROMPTING STRATEGIES
Several prompting techniques have emerged to improve LLM performance without

additional training:

• Zero-shot prompting: The model is given only a task description.
"Classify: The movie was boring." −−−−−−−−−−−−−−−−−−−−−→"Negative"

• Few-shot prompting: The model is given a few input-output examples before
the query.
"Positive: I loved the film.
Negative: The plot was terrible.
Sentiment: It was amazing." −−−−−−−−−−−−−−−−−−−−−−−−−−−→"Positive"
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• Chain-of-thought prompting [38]: The prompt includes step-by-step reasoning
to encourage intermediate steps in generation.
"Q: If there are 3 apples and you take away 2, how many are left?
A: There were 3 apples. You took 2. So, 1 is left."

These approaches enable better reasoning and task completion, even in zero-resource
scenarios. Recent studies show that careful prompt engineering can rival or exceed
fine-tuned models on specific benchmarks [39].

3.11 SYSTEM PROMPTS AND ROLE CONDITIONING
In chat-based systems, models also interpret a special system message (e.g., “You

are a helpful assistant.”) that conditions the behavior of the assistant. This is part of
the context, and subtle changes can significantly affect responses.

3.12 RETRIEVAL-AUGMENTED GENERATION (RAG)
To overcome the limits of a model’s static knowledge and its finite context win-

dow, a technique called Retrieval-Augmented Generation (RAG) was created. RAG
improves LLMs by connecting them to an external, up-to-date knowledge source [40].
This method allows the model to give answers based on current or domain-specific
information without needing to be fully retrained.

RAG works in a two-step process [40]:

1. Retrieval: First, when a query is made, a retriever model searches for relevant
information in an external knowledge base (like website articles or technical doc-
uments). This retriever, such as the Dense Passage Retriever (DPR), turns the
query and documents into vectors to find the best matches through a similarity
search [40].

2. Augmented Generation: Next, the retrieved text pieces are added to the LLM’s
prompt. This gives the model extra context. A generator model, like BART,
uses this expanded context to create a more accurate, factual, and detailed an-
swer [40].

This hybrid approach combines the model’s internal (parametric) knowledge with an
external (non-parametric) knowledge base, providing key benefits:

• Reduces Hallucinations: By grounding answers in real data, RAG makes LLMs
less likely to invent information [40].

• Provides Current Knowledge: The external knowledge base can be updated
easily, so the LLM can answer questions about recent events.

• Improves Transparency: Responses can include their sources, allowing users
to check the facts and trust the answers more.
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3.13 MODEL CONTEXT PROTOCOL (MCP)
The Model Context Protocol (MCP) is an recently proposed standard designed to

standardize the definition, discovery, and invocation of external tools and resources
for AI applications [41, 42]. Unlike traditional methods such as manual API wiring or
platform-specific plugins, which often lead to fragmented and fragile integrations, MCP
provides a unified protocol that decouples tool implementation from usage. This allows
AI models to interact with a diverse ecosystem of tools and data sources through a
consistent interface, enhancing interoperability and scalability [42].

The architecture of MCP is built around three primary components that collaborate
to facilitate secure and efficient communication [42]:

• MCP Host: The AI application (e.g., an IDE, a chat interface, or an autonomous
agent) that initiates tasks and provides the execution environment. It integrates
the MCP client to communicate with external services.

• MCP Client: Acting as an intermediary within the host, the client maintains a one-
to-one communication link with an MCP server. It manages requests, processes
notifications, and handles capability negotiation on behalf of the host.

• MCP Server: A standalone service that exposes specific capabilities to the AI
model. These capabilities are categorized into three main primitives:

– Tools: Executable functions that allow the model to perform actions (e.g.,
querying an API, executing code) and receive results.

– Resources: Structured or unstructured data sources (e.g., logs, files, database
records) that the model can read to gain context.

– Prompts: Reusable templates and workflows that help standardizing inter-
actions and optimizing model performance for specific tasks.

This modular design, illustrated in Figure 7, shifts the paradigm from hardcoded
tool bindings to a dynamic discovery model. Clients can list available tools at runtime
and negotiate schemas, allowing for a flexible “supply-and-consume” ecosystem where
tools can be developed independently of the models that use them [42].

By treating the prompt as a contract, MCP turns “prompt engineering” into a more
systematic process of “context programming”. This approach helps developers build
more robust applications where the LLM acts like a “natural language CPU”, executing
instructions consistently within a larger system [41]. MCP shifts the focus from fine-
tuning the model to intelligently orchestrating the context that is fed to it.
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Figure 7: Model Context Protocol (MCP) architecture [41].

3.14 SUMMARY
In summary, Large Language Models (LLMs) are the result of decades of progress

in neural architectures, computing power, and data availability. The Transformer archi-
tecture, with its self-attention mechanism, was a major step forward, allowing models to
understand long-range connections in text and overcoming the limitations of older re-
current models [23,24]. The modern approach of large-scale pre-training, followed by
efficient adaptation methods like fine-tuning, has created a strong framework for build-
ing versatile AI systems. The Model Context Protocol introduced a structured way to
interact with LLMs, enhancing their reliability and usability in complex applications [41].
The future of the field points toward even larger models with expanded context windows
and new ways of integrating knowledge, promising to further transform the interaction
between humans and machines.
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4
LITERATURE REVIEW

4.1 METHODOLOGY
The literature review was conducted to identify the state of the art in applying large

language models (LLMs) to decompile Python bytecode and recover source code from
intermediate or binary representations. Themain goal was to analyze approaches using
deep learning, transformers, or advanced prompting strategies in reverse engineering.

Searches were performed in the ACM Digital Library, Scopus, Web of Science, and
IEEE Xplore databases. The primary search query used was:

1 ("large language models" OR "LLMs")
2 AND ("bytecode" OR "binary code")
3 AND ("code recovery" OR "decompile"
4 OR "decompilation" OR "decompiler")

No strict time frame was set, as most relevant publications are recent. However,
priority was given to works from the last ten years, with a special focus on the last five.

The selection process involved a rigorous application of both inclusion and exclu-
sion criteria to ensure relevance and quality. Inclusion criteria prioritized studies that
addressed Large LanguageModels (LLMs), deep learning, or transformer architectures
applied to reverse engineering, decompilation, or source code recovery. Furthermore,
selected articles focused on tasks involving the generation or reconstruction of source
code from various low-level representations such as bytecode, binaries, or Intermediate
Representations (IRs), and explored diverse prompting strategies for LLMs. Preference
was given to peer-reviewed publications within the last 10 years, with a strong empha-
sis on research from the past 5 years. Conversely, articles were excluded if their theme
was non-technical (e.g., educational or philosophical applications of LLMs unrelated to
code), if they did not utilize LLMs or machine learning for reverse engineering tasks. In
total, 33 papers were found, and 7 were selected for a detailed analysis.

The Table 1 shows the distribution of articles found across the different research
databases. Its sum exceeds the total number of unique articles due to overlaps between
databases.
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Database Found

ACM 6
IEEE 14
Scopus 29
Web of Science 23

Table 1: Articles found in each research database

4.2 RELATED WORKS
Recent studies have increasingly applied language models to reverse engineering,

especially for recovering source code from low-level representations like binaries and
bytecode. This section reviews seven key studies that show the state of the art in this
field, focusing on deep learning and Large Language Models (LLMs).

A central theme in this research is treating decompilation as a sequence-to-sequence
translation task. This approach, first exploredwith Recurrent Neural Networks (RNNs) [8],
has become much more powerful with the Transformer architecture used in modern
LLMs. By viewing low-level instructions as a “source language” and high-level code as
the “target language”, researchers have used these models to generate code that is of-
ten more readable and semantically correct than the output from traditional, rule-based
decompilers.

Two main strategies have emerged for applying LLMs to decompilation:
1. End-to-End Decompilation: This approach trains an LLM to directly translate a

low-level format into high-level source code. A leading example is LLM4Decompile [4],
which created a series of open-source LLMs specifically for this task. Their models
significantly outperform traditional tools like Ghidra and even general-purpose models
like GPT-4o, producing C code from binaries with much higher rates of re-executability.
Similarly, WaDec [3] demonstrates the power of a fine-tuned LLM for a specific target,
WebAssembly. It produces highly readable and recompilable C code by training the
model on a specialized dataset of code snippets.

2. Decompiler Output Refinement: This is a practical, hybrid approach where
an LLM acts as a post-processor to improve the output of an existing decompiler. It
focuses on fixing “quirks”, which are unnatural or non-idiomatic patterns that traditional
tools often produce. The work on Automatic Fixation of Decompilation Quirks [5]
shows this effectively, using a pre-trained model to treat these quirks like grammatical
errors and “correct” them in decompiled Java code. The LLM4Decompile project also
explores this with its “Ref” models, which refine Ghidra’s output, proving that combining
traditional tools with LLMs can lead to superior results.

Beyond these two strategies, other studies have explored unifiedmodels and broader
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applications. HexT5 [10] presents a model pre-trained on pseudo-code to recover dif-
ferent types of semantic information at once, such as variable names, function names,
and comments from stripped binaries. This shows a move towards more complete,
holistic solutions. A systematic benchmark presented in How Far Have We Gone in
Binary Code Understanding Using Large Language Models [43] evaluates various
LLMs on tasks like function name recovery and code summarization. It confirms their
strong potential while also highlighting their current limitations, reinforcing the idea that
specialized models perform best.

Finally, the practical benefits of this technology are shown in studies likeCan Neural
Decompilation Assist Vulnerability Prediction on Binary Code? [20]. This work
uses neural decompilation as a first step to enable deep learning models to find security
vulnerabilities in binary files. It shows that decompiled code is a more effective input
for this task than raw assembly, outperforming other state-of-the-art methods.

4.3 REVIEW SUMMARY
In summary, the examined works highlight a clear trend: LLMs are powerful tools for

code recovery and binary analysis. However, their success depends heavily on domain-
specific fine-tuning, or other techniques, with large, high-quality datasets. While there
has been significant progress for languages like C, C++, andWebAssembly, a clear gap
exists in the literature: none of the analyzed studies directly address the decompilation
of Python bytecode.

Furthermore, while previous studies have explored a variety of model architectures,
this work focuses on evaluating the applicability of modern large languagemodels to the
task of Python bytecode decompilation. The goal is to assess whether the reasoning
abilities, long-context handling capabilities and generalization properties reported in
recent state-of-the-art models can help mitigate the semantic gap inherent in recovering
high-level source code from bytecode. The challenges addressed in other domains,
such as reconstructing meaningful identifiers, recovering structural abstractions and
producing idiomatic code, remain equally relevant in the Python ecosystem. In this
context, the existing literature provides a solid foundation and a clear motivation for
extending these techniques to the specific problem of Python bytecode decompilation.

26



5



5
PROPOSED ARCHITEC-
TURE

This chapter details the proposed architecture for the decompilation of Python byte-
code using Large Language Models (LLMs).

5.1 OVERVIEW
The proposed architecture is designed to address the loss of semantic information in

decompiled code by integrating Large Language Models (LLMs) with a rigorous feed-
back loop based on software testing. It establishes a controlled environment where
input bytecode is processed, and the resulting source code is systematically validated
to ensure functional correctness.

The architecture defined a data flow to ensure the reliability of the decompilation
process:

• Input Stage: The process begins with the ingestion of Python bytecode from a
self-contained environment and executable code.

• Processing Stage: The Large Language Model acts as the core transformation
engine, interpreting the bytecode context to generate a candidate source code.

• Validation Stage: A dedicated test runner executes the generated code against
a suite of unit tests to verify functional equivalence.

• Output Stage: The cycle concludes by outputting the successfully decompiled
code or logging the results of the attempt.

The architecture consists of a set of components that are organized into a workflow,
within which a context-retrieval mechanism supports the decompilation process.
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Figure 8: Simplified flowchart of the proposed architecture.

As illustrated in Figure 8, the MCP allows the model to search for context in the
database, using relevant labels, retrieving context information that may assist in the
process of decompilation.

5.2 COMPONENTS AND RESPONSABILITIES
The proposed architecture consists of the following key components that will be

detailed in the next sections:

• Model Interface

• Context Store

• Test Runner

• Orchestrator

5.2.1 Model Interface
The Model Interface serves as the abstraction layer responsible for mediating the

interaction between the Large Language Model (LLM) and the system’s external re-
sources. Implemented via the Model Context Protocol (MCP), this component acts as
an MCP Server, exposing the project’s relational database as a set of standardized
tools and context resources.

Instead of relying on rigid, hardcoded queries, the Model Interface defines a schema
of capabilities that the LLM can discover and invoke dynamically. This design effectively
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decouples the inference engine from the data storage details, allowing the model to
actively query for semantic context, such as reference implementations or similar byte-
code patterns, based on its own reasoning process. By facilitating this bi-directional
and protocol-driven communication, the Model Interface transforms the static dataset
into an interactive knowledge base, essential for bridging the semantic gap in decom-
pilation.

5.2.2 Context Store
The Context Store is implemented as a relational database that functions as the

central persistence layer for the architecture, maintaining the system’s state and en-
abling structured data retrieval. It is responsible for storing the entire lifecycle of the
decompilation process, from the initial ingestion of source code and bytecode to the
final validation results.

5.2.3 Test Runner
The Test Runner constitutes the validation layer of the proposed architecture,tasked

with verifying the semantic correctness of the reconstructed source code. Unlike static
analysis tools, this component performs dynamic verification by executing the gener-
ated code against a comprehensive suite of unit tests, ensuring functional equivalence
with the original logic.

From an architectural perspective, the Test Runner encapsulates the execution en-
vironment, abstracting the complexity of execution management, including resource
allocation and runtime monitoring, ensuring stability regardless of the input code’s be-
havior.

Themodule operates as a deterministic oracle within the feedback loop. It evaluates
the candidate solution by comparing its execution outputs against established ground-
truth data. The outcome of this validation, whether a complete success or a failure with
specific error diagnostics, determines the subsequent state of the workflow.

5.2.4 Orchestrator
TheOrchestrator serves as the control unit of the proposed architecture, responsible

for automating and synchronizing the end-to-end decompilation workflow. Acting as the
system’s backbone, it manages the lifecycle of each decompilation task, from the initial
retrieval of bytecode to the final storage of results.

Its primary function is to coordinate the iterative “generate-test-refine” loop. The
Orchestrator sequentially triggers the Model Interface to generate source code, dis-
patches this code to the Test Runner for validation, and interprets the execution feed-
back. Based on the test results, it dynamically decides the next course of action: either
finalizing the process upon success or initiating a refinement cycle with updated context
if errors are detected.
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Furthermore, the Orchestrator enforces execution policies, such as managing the
maximum number of retry attempts and handling timeout conditions. It also ensures
data integrity by logging all intermediate states, generated artifacts, and validation met-
rics into the Context Store, thereby enabling comprehensive traceability of the decom-
pilation process.

5.2.5 Logging and Metrics
There are a few pieces of information captured during the decompilation process to

evaluate the performance of the architecture:

• LLMResponse Error flag: A boolean flag indicating whether the LLM’s response
was not successful (e.g., API error, timeout).

• Limit of attempts exceeded: A boolean flag indicating whether the maximum
number of decompilation attempts was reached without success.

• Number of times themodel tried to decompile: The number of generated code
snippets that are syntactically valid Python code.

• Execution Time: The total time taken for the decompilation process, measured
from the start of the bytecode ingestion to the completion of validation.

5.3 IMPLEMENTATION DETAILS
The following sections provide specific implementation details for each component

of the proposed architecture. The tools and technologies selected are not mandatory
and can be replaced by alternatives that fulfill the same roles, once they follow the
defined architectural principles.

5.3.1 Workflow Engine Implementation
The workflow engine serves as the backbone for orchestrating the disparate com-

ponents of the architecture, database interactions, LLM inference, and test execution.
For this implementation, n8n was selected as the orchestration platform [44]. n8n is a
workflow automation tool that employs a node-based visual interface to define execu-
tion logic.

The choice of n8n is motivated by some factors, such as its visual abstraction, which
facilitates the mapping and monitoring of the “generate-test-refine” loop. Its extensibil-
ity through custom nodes and HTTP requests enables facilitating integration with the
Model Context Protocol (MCP) server and the external test runner. Additionally, the
availability of a self-hosted version [45] allows for data privacy and control over the ex-
ecution environment, satisfying the security requirements for handling untrusted byte-
code.
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However, the use of such a high-level tool introduces certain limitations. It may incur
a resource overhead and slight latency compared to a purely code-based orchestration
script, particularly regarding data serialization between nodes. Additionally, while visual
workflows aid initial understanding, managing extremely complex loops with extensive
error handling can become visually cluttered, potentially increasing maintenance effort
compared to standard modular code.

5.3.2 Model Implementation
The decompilation process utilizes the Gemini 2.5-flash model, selected for its op-

timization in high-frequency, low-latency tasks [46]. This characteristic is essential for
the architecture’s iterative workflow, which often requires multiple inference cycles per
function.

The model offers significant advantages regarding scalability and efficiency. Its re-
duced cost per token compared to larger models enables extensive experimental test-
ing without prohibitive expense [47]. Furthermore, its extended context window allows
for the processing of complete bytecode listings and retrieved database context.

However, the model’s lightweight architecture entails a trade-off in reasoning depth
compared to larger parameter-dense alternatives. This limitation is structurally miti-
gated by the system’s feedback loop, which relies on execution-based validation and
retrieval of context to verify and refine the generated code.

5.3.3 Storage Implementation
TheContext Store is implemented using PostgreSQL, an open-source object-relational

database system [48]. The selection of a relational database ensures data integrity
through full ACID (Atomicity, Consistency, Isolation, Durability) compliance and pro-
vides robust support for complex SQL queries. These capabilities are essential for the
system’s retrieval of data, enabling the Model Interface to execute precise filtering and
joins to retrieve relevant code examples based on bytecode patterns and classification
labels. The implementated database schema is detailed in Appendix B. For an alter-
native implementation, other storage alternatives can be considered, for more scalable
or NoSQL-based solutions, as long as they provide similar querying capabilities.

5.3.4 Test Runner Implementation
A dedicated execution environment was developed to validate the functional correct-

ness of the decompiled code. This component, implemented in Python, orchestrates
the execution of the generated functions against the predefined suite of unit tests. It
is engineered to capture standard output streams and runtime exceptions, giving the
feedback mechanism its integral role in the architecture’s iterative refinement loop, pro-
viding the Large Language Model with specific error diagnostics to guide subsequent
decompilation attempts.
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5.4 EXPERIMENTAL PIPELINE
The experimental validation of the proposed architecture is structured into two dis-

tinct and sequential phases: a preparatory phase focused on dataset construction and
knowledge base formation, followed by an execution phase dedicated to the iterative
decompilation process. This bipartite division ensures that the system is evaluated
against a rigorous, pre-validated standard.

Phase 1 serves as the foundational stage, where the ground truth is established. It
involves the extraction of functions, the generation of comprehensive test suites, and
the semantic enrichment of the dataset through AI-driven classification. The artifacts
produced in this phase create the necessary infrastructure for the subsequent experi-
ments. Phase 2 then leverages this foundation to execute the decompilation workflow.
It utilizes the prepared dataset to prompt the LLM, retrieves relevant context based
on the established classifications, and validates the generated code against the pre-
verified test suites. This separation of concerns ensures that the evaluation in Phase 2
is both robust and reproducible, relying on the high-quality data and testing standards
defined in Phase 1.

The entire experiment is orchestrated around a central relational database that
stores source code, bytecode, generated tests, and classification labels, acting as the
single source of truth for the experiment.

5.4.1 Phase 1: Dataset and Testbed Construction
The first phase focuses on preparing a high-quality dataset and a comprehensive

testbed. This process leverages the capabilities of the LLM to enrich the initial data
collected from open-source repositories.

1. Data Extraction: The process begins by extracting Python functions from a cu-
rated open-source repository. These functions, along with their original source
code and metadata, are stored in a database.

2. AI-driven Data Enrichment: A Large Language Model (LLM) is employed to
analyze and enrich the dataset. This model performs two main tasks:

• Function Classification: It generates descriptive labels for each function,
classifying them based on their purpose or algorithmic category (see Ap-
pendix C.2 for the complete prompt).

• Automated Test Generation: The model was instructed to generate a pool
tests for each function, based on its signature, source code, and initial doctests
(the full prompt used for this task can be found in Appendix C), outputting
tests that will be executed by the Test Runner.

All generated labels and tests are stored in the central database.
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3. Ground-Truth Test Generation: For each function, a ground-truth test answer
key is established, executing the generated tests on the original source code.
The results serve as a baseline for verifying the functional correctness of the de-
compiled code later on. This ensures that the decompiled output matches the
expected behavior defined by the original implementation.

The entire Phase 1 is illustrated in Figure 9.

Phase 1: Dataset and Testbed Construction

Python Repository

Extraction Process

Extract Functions and Metadata

Relational
Database

Large Language Model

Generate Tests Generate LabelsFunction Signature
and Code

Figure 9: Flowchart of Phase 1: Dataset and Testbed Construction.

5.4.2 Phase 2: Orchestration of the Iterative Decompilation Flow
The second phase represents the core of the decompilation process, where byte-

code is translated into source code and iteratively validated. The entire orchestration
is shown in Figure 10.
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Phase 2: Iterative Decompilation Loop

Database
(Context)

Save: Failed
Attempt

Save: Success

Input Validation Set
(10%)

Large Language Model

Output Decompiled Code

Limit > 5?

Run Tests

Access Data
Using MCP

Yes Passed

No (Retry passing
error output as feedback)

Failed

Figure 10: Flowchart of Phase 2: Iterative Decompilation and Validation.

The Figure 10 illustrates the iterative process of decompilation:

• Dataset Splitting: Before initiating the steps in Phase 2, the dataset created in
Phase 1 is divided into two segments: 10% is set aside as a hold-out validation
set for evaluating the final decompilation results, while the remaining 90% is used
to provide context during the decompilation process. The validation set remains
untouched throughout the decompilation workflow, serving solely as a benchmark
for assessing the architecture’s performance.

• Bytecode: Each function’s bytecode is sent to the LLM to generate the initial
decompiled source code (see Appendix C.3 for the full prompt).

• LLM: The LLM consults the database based on classification labels to retrieve
relevant context that may assist in the process of decompiling.

• Runner: A Python script executes the generated code against the established
test suite, capturing the output and any errors and comparing them against the
ground truth.
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• Feedback Loop: If the generated code fails any test, the error output is appended
to the original prompt, and a new decompilation attempt is made. This cycle
continues until the code passes all tests or a maximum of five attempts is reached.

• Storage: The attempts, whether successful or exceeded the limit, are recorded
in the database for further analysis.

5.4.3 Full Workflow Execution
The complete workflow is illustrated in Figure 11, showcasing the integration of both

phases and the iterative decompilation process.

Python Repository

Extraction Process

Extract Functions and Metadata

Relational
Database

Generated Tests Classification
Labels

Relational
Database

Large Language Model

Function Signature
and Code

Separates 10%
Randomly

Database
(90%)

Input Validation Set
(10%)

Large Language Model

Output Decompiled Code

Saves Decompiled
Code To Base

If limits exceeds 5,
saves failed attempt

Tests New Code
With the Answers of

the Original Code

Bytecode

True

False

Access Data
Using MCP
and Brings

Context

Figure 11: Comprehensive flowchart of complete workflow.
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5.5 EVALUATION METRICS AND SUCCESS CRITERIA
Themetric used to evaluate the decompilation process is theSuccessRate, defined

as the percentage of decompiled functions that pass all 25 unit tests in the validation
suite. A function is considered successfully decompiled if the generated source code
produces outputs identical to the original code for the given test inputs, demonstrating
functional equivalence.

5.6 LIMITATIONS AND THREATS TO VALIDITY
Several limitations and potential threats to validity are acknowledged in this experi-

mental design and evaluation process:

• Internal Validity: There is a risk that the model may have memorized code for
lack of internal control of the modal and stochastic variation of prompts. This
could lead to different results, affecting reproducibility.

• External Validity: The dataset is restricted to self-contained algorithmic func-
tions. Consequently, the findings may not generalize to large-scale, enterprise-
level applications involving complex dependencies and external libraries.

• Construct Validity: Success is measured by passing unit tests, which guaran-
tees functional approximation but not the exact reconstruction of the original al-
gorithm.

• Test Coverage Risks: Since the test suites are generated automatically, they
may not cover all edge cases. Incomplete coverage could lead to false positives,
where incorrect decompilations pass validation.

• Bytecode Semantic Gap: The compilation process strips essential semantic
information, such as variable names and comments. This inherently limits the
model’s ability to fully restore the original readability and intent of the source code.

• Model Specificity: The results are dependent on the specific architecture and
training. Different models may yield significantly different performance profiles.
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6
RESULTS AND DISCUSSION

This chapter presents the results obtained from the experimental evaluation of the
proposed architecture. We analyze the effectiveness of the approach using the metrics
defined in the previous chapter and discuss the implications of the findings.

6.1 EXPERIMENTAL SETUP
As mentioned before, the experiments were conducted using the Gemini-2.5-flash

model accessed via the N8N orchestration platform. The dataset approximately con-
sisted of 1,600 Python functions, which were carefully selected to represent a diverse
range of algorithmic challenges, ensuring comprehensive evaluation and were saved
in a PostgreSQL database.

6.1.1 Execution Conditions
The experiments were performed on a laptop machine with the following specifica-

tions:

• CPU: AMD Ryzen 7 5800h

• GPU: NVIDIA GeForce GTX 1650 Mobile

• RAM: 24GB

• Storage: 256GB SSD NVMe

• OS: Pop_OS 22.04 LTS

The number of maximum attempts for each function was set to 5, meaning that if the
model failed to generate a function that passed all unit tests within 5 tries, the attempt
was considered a failure.

If the code attempt lasted more than 10 seconds without returning a result, it was
automatically aborted and counted as a failed attempt.
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6.1.2 Model Parameter Control
For executing the decompilation tasks, the Gemini-2.5-flashmodel was utilized with-

out any additional configurations. On the other hand, for the test and labels generation,
the model was set to use a temperature of 0.3 and a maximum output token of 8192.

6.1.3 Construction of Dataset
The entire dataset constructed in the collection phase is composed of 1,600 Python

functions, each paired with its corresponding bytecode representation, random unit
tests, and classification labels. The functions span a wide range of algorithmic cat-
egories, including sorting algorithms, mathematical computations, data structure ma-
nipulations, and string processing tasks. From this consistent dataset, a validation
subset composed of 10% of the functions was extracted to evaluate the decompilation
performance of the proposed architecture.

The validation dataset was constructed from a larger pool of Python functions col-
lected during the data collection phase, being collected by randomly sampling functions.
Its unique labels count was analyzed to ensure a balanced representation of different
categories. The final validation set consisted of 160 diverse Python functions with 166
unique classification labels, covering a wide range of algorithmic challenges.

6.2 EXPERIMENTAL RESULTS
The validation was conducted on a held-out set of 160 Python functions, represent-

ing 10% of the total processed dataset. These functions were never included in the
experiment’s dataset or context retrieval phase, ensuring an unbiased evaluation.

6.2.1 Quantitative Analysis
The primary objective was to determine if themodel could recover functionally equiv-

alent source code from bytecode. The results of success rate are summarized in Table
2.

Result Count %

Successfully Decompiled 147 91.875
Failed 13 8.125

Total 160

Table 2: Decompilation Results Summary

Out of the 160 bytecode samples, the system successfully recovered 147 func-
tions. Success was defined as the generated code passing all 25 unit tests generated
and validated in the data collection phase. This yields a high success rate of approxi-
mately 91.875%. 13 functions failed to pass the test suite within the maximum allowed
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attempts.
These results indicate that the approach shows potential in decompiling bytecode

for the types of algorithmic functions present in the dataset. The feedback loop and its
ability to read the error message from the test execution played a crucial role, since 30
decompiled codes were successful not at first try. The distribution of attempts for the
successful functions is shown in Figure 12.
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Figure 12: Distribution of Attempts for Successful Functions

• Total Orchestration Run Time: 1 hour 35 minutes 42 seconds

• Average Time per Function: Approximately 32.82 seconds

• Average Time per Successful Function: Approximately 24.8 seconds

• Average Time per Failed Function: Approximately 122.8 seconds

• Average Attempts per Function: Approximately 1.66 attempts

6.2.2 Qualitative Analysis
An analysis of the classification labels associated with the 13 failed samples pro-

vides further insight into the model’s limitations. The failures were not uniformly dis-
tributed but rather clustered around specific algorithmic categories. A significant portion
of the failures involved the model not outputing any code in the last try. Other failures
involved complex mathematical and scientific calculations (e.g., hubble_calculation,
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linear_equation_solving), suggesting challenges in reconstructing precise numerical
logic or handling floating-point precision from bytecode. Another notable cluster was
related to data structures, specifically tree_traversal and tree_manipulation, which
often involve recursive patterns that can be ambiguous at the bytecode level.

In Algorithm 3, we present an example of an original function that was successfully
decompiled by the model.

1 import numpy as np
2

3 def runge_kutta(f, y0, x0, h, x_end):
4 n = int(np.ceil((x_end - x0) / h))
5 y = np.zeros((n + 1,))
6 y[0] = y0
7 x = x0
8

9 for k in range(n):
10 k1 = f(x, y[k])
11 k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
12 k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
13 k4 = f(x + h, y[k] + h * k3)
14 y[k + 1] = y[k] + (1 / 6) * h * (k1 + 2 * k2 + 2 * k3 + k4)
15 x += h
16

17 return y

Algorithm 3: Original Function Example

And here, in Algorithm 4, is the corresponding decompiled output generated by the
model.

1 import numpy as np
2

3 def runge_kutta(f, y0, x0, h, x_end):
4 n = int(np.ceil((x_end - x0) / h))
5 y = np.zeros(n + 1)
6 y[0] = y0
7 x = x0
8

9 for k in range(n):
10 k1 = f(x, y[k])
11 k2 = f(x + 0.5 * h, y[k] + 0.5 * h * k1)
12 k3 = f(x + 0.5 * h, y[k] + 0.5 * h * k2)
13 k4 = f(x + h, y[k] + h * k3)
14 y[k + 1] = y[k] + (h / 6) * (k1 + 2 * k2 + 2 * k3 + k4)
15 x += h
16 return y

Algorithm 4: Decompiled Function Example
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It is evident that the decompiled code closely mirrors the original function, with only
minor syntactic variations that do not affect functionality, since the multiplication oc-
curs before the addition due to operator precedence rules, the expression 1/6 * h is
equivalent to (h / 6).

In the Appendix is presented one of the failed decompilation cases. The original
function can be seen entirely in Appendix D, but here is an snippet of it for reference:

1 useable_form = data_set.copy()
2 simplified = simplify(useable_form)
3 simplified = simplified[::-1]

The entire decompiled source code is presented in Appendix E. The equivalent
snippet from the decompiled code is:

1 useable_form = data_set.copy()
2 simplified = simplify(useable_form)
3 simplified = simplified[::-1]

The comparison between the original source and the decompiled reveals that while
the reconstruction achieved high structural fidelity, preserving variable nomenclature
and control flow, it failed to maintain semantic integrity in critical operations. The most
significant deviation occurred in the translation of Python’s slicing syntax, where list in-
version operations ([::-1]), essential for the back-substitution phase of the Gaussian
elimination algorithm, were erroneously decompiled as truncation operations ([:-1]).
This subtle syntactic hallucination fundamentally alters the algorithm’s behavior, caus-
ing it to discard data rather than reorder it for processing.

Furthermore, the logical discrepancies extend to the pivot selection mechanism
used to mitigate division-by-zero errors. The decompiled code inverted the conditional
logic regarding row selection, prioritizing unstable configurations that the original code
explicitly sought to avoid. Consequently, although the decompiled output remains syn-
tactically parsable and visually similar to the original, the accumulation of these precise
logic errors renders the code functionally inoperable. This outcome highlights a specific
limitation in the decompilation process: the difficulty in accurately recovering precise
mathematical syntax when distinct operators share high visual or statistical similarity.
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6.3 DISCUSSION
The high success rate indicates that the hypothesis that modern LLMs can often

reconstruct functionally correct Python code from bytecode, at least for the types of
algorithmic functions evaluated in this study.

6.3.1 Analysis of Successes
A qualitative analysis of the successfully decompiled samples reveals compelling

evidence of the model’s ability to reconstruct high-level abstractions. By examining
the output code in comparison to standard Pythonic practices, several key strengths
emerge:

• Idiomatic Code Structure: The model consistently favored idiomatic Python
constructs over direct, low-level translations of bytecode instructions. For in-
stance, in functions like “is_pangram”, the model correctly generated code us-
ing sets (“set()”) and list comprehensions or string methods like “replace” and
“lower”. This demonstrates a clear understanding of functional composition and
built-in methods, contrasting with the explicit loops that a traditional decompiler
might infer from the bytecode’s jump instructions.

• Type Hinting and Modern Standards: A notable observation is the consistent
inclusion of type hints, such as in “binary_search_by_recursion”, where argu-
ments were typed (e.g., “list[int]”) and return types specified (“-> int”). This
suggests that the model draws upon its vast training on modern codebases to pro-
duce code that adheres to contemporary quality standards, enhancing the main-
tainability of the decompiled output.

• Semantic Variable Naming: In many cases, the model successfully inferred
meaningful variable names based on the context of operations. In geometric
functions like “surface_area_cylinder”, variables were correctly named “radius”
and “height”, and mathematical constants were imported from the “math” module
(“pi”, “sqrt”), rather than being hardcoded or assigned generic identifiers (e.g.,
“v1”, “v2”).

• Complex Control Flow: The model successfully recovered complex algorithmic
structures. In sorting algorithms like “quick_select”, it accurately reconstructed
recursive logic and partition helper functions. The ability to distinguish between
recursive calls and iterative loops from bytecode highlights the model’s capacity
for higher-level pattern matching.
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6.3.2 Error Patterns
A detailed examination of the failed decompilation attempts reveals a distinct fail-

ure mode that transcends simple syntactic inaccuracy. Contrary to the expectation of
generating syntactically invalid or logically flawed code, the primary source of failure
was the model’s inability to produce any output in the final iteration of the refinement
loop. In these instances, the system did not register an explicit API error or timeout;
rather, the model returned an empty response, which was subsequently recorded as
the decompiled artifact. This behavior remains to be fully understood and may indicate
limitations in the model’s capacity to handle certain bytecode patterns, complexities or
token limits.

6.3.3 Practical Implications
The findings of this study have significant implications for the field of software re-

verse engineering and security analysis. The demonstrated ability of LLMs to effectively
decompile bytecode into high-level source code opens new avenues for automated
code recovery, vulnerability assessment, and legacy system maintenance. However,
the identified limitations also underscore the need for cautious application of these
models, particularly in scenarios where precision and correctness are paramount. Fu-
ture work should focus on addressing the failure modes identified, potentially through
enhanced context provisioning, model fine-tuning, or hybrid approaches that combine
LLMs with traditional decompilation techniques. Additionally, exploring the integration
of user feedback mechanisms could further refine the decompilation process and im-
prove overall accuracy.

Hybrid approaches are a promising direction for future research, because they can
leverage the strengths of both LLMs and traditional decompilation techniques. Solo
LLM-based decompilation may struggle with certain bytecode patterns and are not de-
terministic, which can lead to inconsistent results. By combining LLMs with established
decompilation algorithms, it may be possible to achieve higher accuracy and reliability.

6.3.4 Final Considerations
While the results demonstrate the promising potential of LLMs in decompilation

tasks, they also underscore significant areas for improvement. Addressing these lim-
itations is crucial for advancing the state of the art in automated code recovery and
reverse engineering. Gathering additional metrics, such as token consumption per at-
tempt and the frequency of database context queries, could provide deeper insights
into the model’s behavior and success rates. Future work should explore hybrid ap-
proaches, evaluate alternative models, and refine context retrieval mechanisms to en-
hance overall performance and reliability
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7
FINAL CONSIDERATIONS

This work investigated the application of Large LanguageModels (LLMs) to the chal-
lenge of decompiling Python 3.13 bytecode, a task traditionally hampered by the loss of
semantic information during compilation. By proposing an architecture that integrates
open-source tools with a modern LLM, this research sought to determine if AI could not
only restore syntax but also recover the functional semantics of the original code.

7.1 SYNTHESIS OF RESULTS
The experimental results strongly support the feasibility of this approach. With a

success rate of nearly 92% (147 out of 160 samples), the system demonstrated that
it is possible to automatically recover functionally equivalent source code for a wide
range of algorithms. The use of a rigorous validation process, involving 25 unit tests
per function, ensures that the success metric is meaningful and not just a measure of
syntactic correctness.

The study confirms the hypothesis that LLMs can effectively support source code
recovery. The average processing time of approximately 33 seconds per function high-
lights the potential for efficiency in automated workflows. This adaptability, combined
with the ability to handle version-agnostic decompilation without rigid rule-sets, under-
scores the advantage of generative AI in software engineering, overall when compared
to traditional decompilation tools that required continuous manual updates to handle
new language features.

7.2 CONTRIBUTIONS
The main contributions of this work include:

• A Novel Decompilation Architecture: We presented a robust architecture that
implements an iterative “generate-test-refine” loop, significantly improving the re-
liability of the output.

• Methodology for Dataset Creation: We established a scalable method for cre-
ating ground-truth datasets for decompilation research, utilizing LLMs to generate
and validate comprehensive test suites.

• Evaluation of Modern LLMs: We provided empirical evidence of the capabilities
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ofmodern LLMs in low-level code understanding tasks, contributing to the growing
body of knowledge on AI for Software Engineering.

7.3 LIMITATIONS
Despite the promising results, this study has limitations:

• Dataset Scope: The evaluation was primarily focused on algorithmic functions
from the “The Algorithms” repository. However, even within this scope, the model
presented difficulties in handling complex mathematical calculations and recur-
sive data structure manipulations. Additionally, the performance on large-scale
codebases remains to be tested.

• Failure Modes: A distinct failure mode was observed where the model some-
times produced empty responses in the final refinement iteration, rather than ex-
plicit errors, indicating potential instability in handling certain edge cases.

• Specific Python Version: The study focused on Python 3.13. Bytecode changes
between versions, and themodel’s adaptability to older or future bytecode formats
was not evaluated.

• LLMs: The decompilation was performed using only one model. The perfor-
mance of other models, including open-source alternatives, should be further ex-
plored.

7.4 FUTURE WORK
Future research could expand on this foundation by:

• Fine-tuningModels: Training or fine-tuning a smaller, open-sourcemodel specif-
ically on pairs of (bytecode, source code) to reduce reliance on general-purpose
models.

• Cross-VersionCompatibility: Investigating themodel’s ability to decompile byte-
code from different Python versions.

• Complex System Decompilation: Extending the architecture to handle entire
modules or classes rather than isolated functions, addressing the challenge of
inter-procedural dependencies.

• Hybrid Approaches: Investigating the combination of LLMs with traditional de-
compilation techniques to mitigate specific weaknesses, such as mathematical
precision and structural consistency.
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• Try different models: Evaluating the performance of various LLMs, including
open-source models, to identify the most effective architectures for code decom-
pilation tasks.

In conclusion, this work represents a significant step forward in reverse engineering,
demonstrating that LLMs can potentially bridge the semantic gap in decompilation.
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Appendix A - AST Text Representation

The following snippet shows the representation of the Abstract Syntax Tree (AST)
for the code print("Hello World"), as generated by Python’s ast.parse function.

1 <ast.Module object at 0x70c532ea7390 >
2 {'body': [<ast.Expr object at 0x70c532ea6c10 >],
3 'type_ignores': []}
4 children: [<ast.Expr object at 0x70c532ea6c10 >]
5 <ast.Expr object at 0x70c532ea6c10 >
6 {'value': <ast.Call object at 0x70c532ea4b90 >,
7 'lineno': 1, 'col_offset': 0, 'end_lineno': 1,
8 'end_col_offset': 20}
9 children: [<ast.Call object at 0x70c532ea4b90 >]

10 <ast.Call object at 0x70c532ea4b90 >
11 {'func': <ast.Name object at 0x70c532ea6c50 >,
12 'args': [<ast.Constant object at 0x70c532db5650 >],
13 'keywords': [], 'lineno': 1, 'col_offset': 0, 'end_lineno': 1,
14 'end_col_offset': 20}
15 children: [<ast.Name object at 0x70c532ea6c50 >,
16 <ast.Constant object at 0x70c532db5650 >]
17 <ast.Name object at 0x70c532ea6c50 >
18 {'id': 'print', 'ctx': <ast.Load object at 0x70c532d90410 >,
19 'lineno': 1, 'col_offset': 0, 'end_lineno': 1, 'end_col_offset': 5}
20 children: [<ast.Load object at 0x70c532d90410 >]
21 <ast.Constant object at 0x70c532db5650 >
22 {'value': 'Hello World', 'kind': None, 'lineno': 1, 'col_offset': 6,
23 'end_lineno': 1, 'end_col_offset': 19}
24 children: []
25 <ast.Load object at 0x70c532d90410 >
26 {}
27 children: []
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Appendix B - Database Schema

The following snippet presents the Data Definition Language (DDL) SQL statements
used to create the relational database schema for the proposed architecture. This
schema supports the storage of code samples, analysis results, generated tests, and
decompilation metrics.

1 -- Table to store random samples for testing
2 CREATE TABLE public.amostra_testes (
3 id int8 NOT NULL PRIMARY KEY,
4 caminho_arquivo text NULL,
5 nome_funcao text NULL,
6 codigo_fonte text NULL,
7 bytecode text NULL,
8 input_doctest text NULL,
9 rotulos_llm jsonb NULL,

10 testes_gerados_llm _text NULL
11 );
12

13 -- Main table storing the analyzed functions and metadata
14 CREATE TABLE public.analise_funcoes (
15 id serial4 NOT NULL PRIMARY KEY,
16 caminho_arquivo text NOT NULL,
17 nome_funcao text NOT NULL,
18 codigo_fonte text NOT NULL,
19 bytecode text NOT NULL,
20 input_doctest text NULL,
21 doctest_args_str text NULL,
22 assinatura_funcao text NULL,
23 rotulos_llm text NULL
24 );
25

26 -- Table storing the results of decompilation attempts
27 CREATE TABLE public.decompilados (
28 id bigserial NOT NULL PRIMARY KEY,
29 modelo text NULL,
30 contador int8 DEFAULT 0,
31 limite_de_tentativas_atingido bool DEFAULT false,
32 erro_na_resposta_do_modelo bool DEFAULT false,
33 codigo_fonte_gerado text NULL,
34 codigo_fonte_original text NULL,
35 bytecode text NULL,
36 testes_executados varchar NULL,
37 tempo_de_execucao text NULL,
38 gabarito text NULL,
39 observacao text NULL
40 );

57



41

42 -- Table for storing ground truth from doctests
43 CREATE TABLE public.gabarito_doctest (
44 id serial4 NOT NULL PRIMARY KEY,
45 id_funcao int4 NOT NULL,
46 teste_doctest text NOT NULL,
47 gabarito_doctest text NULL,
48 gabarito_gerado text NULL,
49 gabaritos_iguais bool NULL,
50 erro_execucao text NULL
51 );
52

53 -- Table for storing generated unit tests
54 CREATE TABLE public.testes (
55 id serial4 NOT NULL PRIMARY KEY,
56 id_funcao int4 NOT NULL,
57 teste_gerado text NOT NULL,
58 resultado_execucao text NOT NULL,
59 modelo varchar(100) NULL,
60 saida_real text NULL,
61 log_erro text NULL
62 );
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Appendix C - Experimental Prompts

C.1 Test Generation Prompt

1 Role: You are a Senior Python QA Engineer. Your goal is to generate a
diverse

2 set of input arguments to stress-test a specific Python function.
3 Task: Analyze the provided Python function (source code and signature) and
4 generate a list of argument strings that can be passed directly to the
5 function.
6 Guidelines:
7 1. **Format**: Output strictly JSON with a single key "tests" containing a
8 list of strings.
9 2. **Content**: Each string must represent valid Python arguments (e.g.,

10 "1, 2", "'text', True", "key='value '").
11 3. **Efficiency**: Output ONLY valid JSON. No comments, no whitespace
12 padding.
13 4. **Coverage**:
14 - Generate **{num_testes_gerar} new, unique** test cases.
15 - Include: Happy path, Edge cases (empty strings, empty lists, 0,
16 negative numbers), Type boundaries (None).
17 5. **Restrictions**:
18 - Do NOT repeat the function name.
19 - Use only Python built-in types and literals (int, float, str, list,
20 dict, bool, None).
21 - Do NOT assume external variables exist.
22 - Do NOT repeat any arguments from the 'Existing Tests' section below.
23 - Do NOT include variables atributions in the arguments.
24 Target Function Information:
25 Name: `{nome_funcao}`
26 Signature: `{assinatura_funcao}`
27 {secao_testes_existentes}
28 Code:
29 ```python
30 {codigo_da_funcao}
31 ```
32

33 Generate the JSON object now:
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C.2 Label Generation Prompt

1 You are an expert in Python code analysis. Analyze the function and output
JSON

2 with a single key 'labels '.
3 The 'labels' should be a list of 1-5 concise categories (snake_case)

describing
4 the function 's purpose (e.g., "data_processing", "database_io",
5 "math_calculation").
6

7 Function: `{nome_funcao}`
8 Signature: `{assinatura_funcao}`
9 Code:

10 ```python
11 {codigo_da_funcao}
12 ```
13

14 Output JSON format: {{ "labels": ["label_one", "label_two"] }}

60



C.3 Decompilation Prompt

1 Subject: Python 3.13 Bytecode to Source Code Decompilation
2

3 Persona: You are an expert in Python bytecode reverse engineering ,
4 with deep knowledge of the CPython VM internals , specifically for version

3.13.
5

6 Core Task: Your task is to analyze the provided Python 3.13 bytecode below
7 and decompile it back into the original , human-readable, and semantically
8 equivalent Python source code.
9

10 Detailed Instructions:
11

12 1. Opcode Analysis: Examine the sequence of opcodes (bytecode instructions)
13 and their arguments. Reconstruct the program's logic by identifying:
14

15 - Control flow structures (for/while loops, if/else conditionals).
16 - Function (def) and class (class) definitions , including their scopes.
17 - Variable operations (assignment , loading, deletion).
18 - Function calls and attribute handling.
19 - Exception handling (try/except/finally).
20

21 2. Mandatory Knowledge Base Use: You *must* use your internal knowledge
base,

22 using the tool "functions to get context" to select the PostgreSQL data,
23 which functions as a database of Python 3.13 code samples and their

respective bytecodes ,
24 to enhance the decompilation. Actively search this database for similar

bytecode patterns
25 to infer the most probable and idiomatic source code structure. The tool

must be used
26 by all meanings.
27

28 2.1. The columns in the table are:
29 - id (bigserial)
30 - caminho_arquivo (text)
31 - nome_funcao (text)
32 - codigo_fonte (text)
33 - bytecode (bytea)
34 - input_doctest (text)
35 - rotulos_llm (text)
36 2.2. The table name is "analise_funcoes"
37 2.3. Use the following query to check the unique values from "rotulos_llm":
38 ``` SQL
39 SELECT DISTINCT TRIM(label) AS label
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40 FROM (
41 SELECT unnest(string_to_array(rotulos_llm , ',')) AS label
42 FROM analise_funcoes
43 ) AS todas
44 WHERE TRIM(label) ILIKE '%data%'
45 ORDER BY label limit 15;
46 ```
47 Where "data" is the term you want to search for the labels.
48 2.4. After you get the existing labels, search for the bytecode and source

code
49 (codigo_fonte) in the table, for more context, using the following query:
50 ``` SQL
51 SELECT codigo_fonte
52 FROM analise_funcoes
53 WHERE rotulos_llm ILIKE '%data%'
54 limit 15;
55 ```
56 Where "data" is the label returned by the previous query.
57

58 3. Version Specificity: The decompilation logic must be strictly for Python
3.13,

59 accounting for any changes in opcodes or stack structure introduced in this
version.

60

61 4. Output Format (Strict): Your response must contain *only* and
exclusively the

62 decompiled Python source code. Do not include any explanations , greetings ,
or any text

63 that is not part of the source code. Do not wrap the code in anything, such
as "``` python"

64 or things like that.
65

66

67 Bytecode to Decompile:
68 ```
69 {{ $('amostra_testes ').first().json.bytecode }}
70 ```
71

72 {{ $if($('Run tests on decompiled source code').isExecuted , 'The result of
the tests was:\n'+

73 $('Run tests on decompiled source code').first().json.stdout +
74 '\nAnd the tests were:\n' + $('cat testes ').item.json.stdout || "", "")}}
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Appendix D - Original Source Code Error Case

1 def solve_simultaneous(equations: list[list]) -> list:
2 if len(equations) == 0:
3 raise IndexError("solve_simultaneous() requires n lists of length n+1

")
4 _length = len(equations) + 1
5 if any(len(item) != _length for item in equations):
6 raise IndexError("solve_simultaneous() requires n lists of length n+1

")
7 for row in equations:
8 if any(not isinstance(column, (int, float)) for column in row):
9 raise ValueError("solve_simultaneous() requires lists of integers

")
10 if len(equations) == 1:
11 return [equations[0][-1] / equations[0][0]]
12 data_set = equations.copy()
13 if any(0 in row for row in data_set):
14 temp_data = data_set.copy()
15 full_row = []
16 for row_index , row in enumerate(temp_data):
17 if 0 not in row:
18 full_row = data_set.pop(row_index)
19 break
20 if not full_row:
21 raise ValueError("solve_simultaneous() requires at least 1 full

equation")
22 data_set.insert(0, full_row)
23 useable_form = data_set.copy()
24 simplified = simplify(useable_form)
25 simplified = simplified[::-1]
26 solutions: list = []
27 for row in simplified:
28 current_solution = row[-1]
29 if not solutions:
30 if row[-2] == 0:
31 solutions.append(0)
32 continue
33 solutions.append(current_solution / row[-2])
34 continue
35 temp_row = row.copy()[: len(row) - 1 :]
36 while temp_row[0] == 0:
37 temp_row.pop(0)
38 if len(temp_row) == 0:
39 solutions.append(0)
40 continue
41 temp_row = temp_row[1::]
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42 temp_row = temp_row[::-1]
43 for column_index , column in enumerate(temp_row):
44 current_solution -= column * solutions[column_index]
45 solutions.append(current_solution)
46 final = []
47 for item in solutions:
48 final.append(float(round(item, 5)))
49 return final[::-1]

Algorithm 5: Original Function that was decompiled with Error
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Appendix E - Decompiled Source Code Error Case

1 def solve_simultaneous(equations: list[list]) -> list:
2 _length = None
3 if len(equations) == 0:
4 raise IndexError('solve_simultaneous() requires n lists of length n

+1')
5

6 _length = len(equations) + 1
7 if any(len(item) != _length for item in equations):
8 raise IndexError('solve_simultaneous() requires n lists of length n

+1')
9

10 for row in equations:
11 if any(not isinstance(column, (int, float)) for column in row):
12 raise ValueError('solve_simultaneous() requires lists of

integers')
13

14 if len(equations) == 1:
15 return [equations[0][-1] / equations[0][0]]
16

17 data_set = equations.copy()
18

19 if any(0 not in row for row in data_set):
20 temp_data = data_set.copy()
21 full_row = []
22 for row_index , row in enumerate(temp_data):
23 if 0 in row:
24 full_row = data_set.pop(row_index)
25 break
26

27 if not full_row:
28 raise ValueError('solve_simultaneous() requires at least 1 full

equation')
29 data_set.insert(0, full_row)
30

31 useable_form = data_set.copy()
32 simplified = simplify(useable_form)
33 simplified = simplified[:-1]
34

35 solutions = []
36 for row in simplified:
37 current_solution = row[-1]
38 if not solutions:
39 if row[-2] == 0:
40 solutions.append(0)
41 else:
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42 solutions.append(current_solution / row[-2])
43 else:
44 temp_row = row.copy()[:-1]
45 while temp_row[0] == 0 and len(temp_row) != 0:
46 temp_row.pop(0)
47

48 if len(temp_row) == 0:
49 solutions.append(0)
50 else:
51 temp_row = temp_row[1:]
52 temp_row = temp_row[:-1]
53 for column_index , column in enumerate(temp_row):
54 current_solution -= column * solutions[column_index]
55 solutions.append(current_solution)
56

57 final = []
58 for item in solutions:
59 final.append(float(round(item, 5)))
60

61 return final[::-1]

Algorithm 6: Decompiled Code with Error
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