
Ensino que
te conecta

BACHARELADO EM
CIÊNCIA DA COMPUTAÇÃO

AN AI-DRIVEN ARCHITECTURE FOR INTELLIGENT
LOG OBSERVABILITY

LAURA CAROLINE MARCIANO DE MELO MENEZES

Brasília - DF, 2025

LAURA CAROLINE MARCIANO DE MELO MENEZES

AN AI-DRIVEN ARCHITECTURE FOR INTELLIGENT LOG
OBSERVABILITY

Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção
de grau de Bacharel em Ciência da Computação, pelo Instituto Brasileiro de Ensino,
Desenvolvimento e Pesquisa (IDP).

Orientador
Me. Klayton Rodrigues de Castro

Brasília - DF, 2025

Código de catalogação na publicação – CIP

M543a Menezes, Laura Caroline Marciano de Melo

An AI-Driven Architecture for Intelligent Log Observability / Laura

Caroline Marciano de Melo Menezes. — Brasília: Instituto Brasileiro de

Ensino, Desenvolvimento e Pesquisa, 2025.

68 f. : il. algumas color.

Orientador: Prof. Ms. Klayton Rodrigues de Castro

Monografia (Bacharelado em Ciência da Computação) — Instituto

Brasileiro de Ensino, Desenvolvimento e Pesquisa – IDP, 2025.

1. Inteligência artificial. 2. Aprendizado computacional. 3.
Resolução de problemas - Ciência da Computação. I.Título

CDD 006.31

Elaborada por Natália Bianca Mascarenhas Puricelli – CRB 1/3439

LAURA CAROLINE MARCIANO DE MELO MENEZES

AN AI-DRIVEN ARCHITECTURE FOR INTELLIGENT LOG
OBSERVABILITY

Trabalho de Conclusão de Curso apresentado como requisito parcial para a obtenção
de grau de Bacharel em Ciência da Computação, pelo Instituto Brasileiro de Ensino,
Desenvolvimento e Pesquisa (IDP).

Aprovado em 12/12/2025

Banca Examinadora

Me. Klayton Rodrigues de Castro- Orientador

Me. Lucas Maurício Martins e Castro- Examinador interno

Ma. Lorena Bezerra de Souza Borges- Examinadora interna

DEDICATÓRIA

Aos meus pais, Geralda Marciano e Hélio Menezes, pelo amor incondicional, pelos
valores transmitidos, por todo o apoio material e emocional, e por serem o meu maior
e mais sólido alicerce. Sem eles eu não teria a oportunidade de escrever isso.

Ao meu namorado, Thiago Gough, pela paciência, pela compreensão das minhas
ausências, e por ser meu porto seguro e incentivo constante durante toda essa jor-
nada.

iii

AGRADECIMENTOS

A concretização deste trabalho só foi possível graças à colaboração e ao apoio de
diversas pessoas e instituições a quem presto, aqui, o meu profundo reconhecimento.

Ao meu Orientador, Prof. Me. Klayton Castro, pela confiança, pela paciência, pela
partilha do seu vasto conhecimento e pela orientação crítica e atenciosa que foi fun-
damental para a excelência e o desenvolvimento desta pesquisa.

Aos professores do curso de Ciência da Computação, que, com dedicação e maes-
tria, transmitiram-me os fundamentos teóricos e práticos essenciais para a minha for-
mação profissional e pessoal.

Aos membros da Banca Examinadora, pela disponibilidade em avaliar este trabalho
e pelas sugestões que certamente contribuirão para o seu enriquecimento.

Ao Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa , por proporcionar o
ambiente e a estrutura necessários para o meu crescimento acadêmico.

Aos meus amigos e colegas de curso, pela convivência, pelas trocas de ideias e
por tornarem a rotina acadêmica mais leve e estimulante.

E, por fim, à minha família, ao meu companheiro e a todos que, direta ou indireta-
mente, torceram pelo meu sucesso, deixo o meu mais sincero e eterno “obrigado”.

iv

ABSTRACT

Mission-critical distributed applications present significant challenges for diagnosing
and interpreting log records due to their high volume, fragmentation, and limited causal
structure, especially in environments where failures result from complex interactions
rather than isolated events. Metrics-centric monitoring approaches offer limited ex-
planatory support in these contexts, increasing the cognitive load associated with inci-
dent configuration, diagnosis, and analysis. This work presents a log-centric observ-
ability architecture, designed and evaluated from a real production environment, that
integrates structured log ingestion and semantic enrichment. An end-to-end pipeline
was implemented based on the Elastic Stack and extended with Small Language Mod-
els (SLMs) running locally to enrich raw operational logs with contextual and diagnostic
information. Additionally, a numerical prediction experiment was conducted using a
traditional supervised machine learning approach, based on runtime signals derived
from the logs themselves. The study is based on one year of anonymous production
log data collected from a relevant Brazilian public sector system operating under sus-
tained load conditions. The experimental evaluation comprises twelve representative
log types, two distinct hardware profiles with CPU-only inference, two compact SLM
families, and repeated executions in different configurations, totaling nearly a thousand
inference executions. The feasibility of semantic enrichment of records was evaluated
considering inference latency, execution stability, and explanatory consistency. The re-
sults indicate that semantic enrichment can be applied directly to raw log records with
predictable execution behavior on general-purpose hardware, providing a practical ba-
sis for log-centric observability architectures in institutional production environments.

Keywords: Observability; Intelligent Operational Diagnosis; Small Language
Models; Semantic Log Enrichment; AI for System Operations..

v

RESUMO

Aplicações distribuídas de missão crítica apresentam desafios significativos para o di-
agnóstico e a interpretação de registros de log devido ao seu alto volume, fragmen-
tação e estrutura causal limitada, especialmente em ambientes onde as falhas resul-
tam de interações complexas, em vez de eventos isolados. Abordagens de monitora-
mento centradas em métricas oferecem suporte explicativo limitado nesses contextos,
aumentando a carga cognitiva associada à configuração, diagnóstico e análise de in-
cidentes. Este trabalho apresenta uma arquitetura de observabilidade centrada em
registros de log, projetada e avaliada a partir de um ambiente de produção real, que
integra a ingestão estruturada de logs e o enriquecimento semântico. Um pipeline de
ponta a ponta foi implementado com base no Elastic Stack e estendido com Small
Language Models (SLMs) executados localmente para enriquecer os registros opera-
cionais brutos com informações contextuais e de diagnóstico. De forma complementar,
foi conduzido um experimento de previsão numérica segundo uma abordagem tradi-
cional de aprendizado de máquina supervisionado, com base em sinais de tempo de
execução derivados dos próprios registros. O estudo é baseado em um ano de dados
de logs de produção anônimos coletados de um relevante sistema do setor público
brasileiro, operando sob condições de carga sustentada. A avaliação experimental
compreende doze tipos de logs representativos, dois perfis de hardware distintos com
inferência apenas por CPU, duas famílias compactas de SLMs e execuções repetidas
em diferentes configurações, totalizando quase mil execuções de inferência. A viabil-
idade do enriquecimento semântico de registros foi avaliada considerando a latência
de inferência, a estabilidade de execução e a consistência explicativa. Os resultados
indicam que o enriquecimento semântico pode ser aplicado diretamente a registros
de log brutos com comportamento de execução previsível em hardware de uso geral,
fornecendo uma base prática para arquiteturas de observabilidade centradas em logs
em ambientes de produção institucionais.

Palavras-chave: Observabilidade; Diagnóstico Operacional Inteligente; Modelos
Pequenos de Linguagem; Enriquecimento Semântico de Logs; IA Aplicada à

Operação de Sistemas..

vi

LIST OF TABLES
1 Comparison Between Traditional Monitoring and Modern Ob-

servability Tools . 9
2 Comparison Between Monitoring and Observability tools 10
3 Comparison between BERT (MLM) and GPT (Autoregressive)

Models. 14
4 Comparative overview of related works and market solutions . . 18
5 Summary of experimental setup: hardware, models, configu-

rations, and execution volume.. 36
6 Summary of log types, operational characteristics, and seman-

tic clusters. 41
7 Performancemetrics for GC forecastingwithin a 30-second hori-

zon. 43
8 Performance metrics for GC forecasting within a 30-minutes

horizon.. 44
9 Performancemetrics for GC forecastingwithin a 60-minute hori-

zon. 44

CONTENTS
1 Introduction . 2
2 Literature Review . 6

2.1 Evolution of Software and Platform Engineering. 6
2.1.1Legacy Monitoring Approaches . 6

2.1.2Observability Concepts . 7

2.1.3Monitoring vs. Observability . 7

2.1.4Log Pipelines and the Elastic Stack . 10

2.2 Foundations for Intelligent Operations . 11
2.2.1Core Concepts of Artificial Intelligence . 11

2.2.2Artificial Intelligence for IT Operations (AIOps) . 14

2.3 Related Works. 16
2.3.1Research Foundations and Related Studies. 16

2.3.2Market Solutions and Industrial State of the Art . 17

2.4 Synthesis and Research Gap Consolidation . 20

3 Methodology . 22
3.1 Methodological Design Overview . 22
3.2 Type and Research Approach . 22
3.3 Log Enrichment Stage . 23
3.4 Complementary Predictive Modelling . 25

4 Proposed Solution. 28
4.1 Architectural Description . 28

4.1.1Building Block View . 28

4.1.2Runtime View. 28

4.1.3Deployment View . 31

4.2 Architectural Considerations and Representative Scenarios 31

5 Results and Discussion. 34
5.1 Experimental Setup . 34
5.2 Inference Performance Analysis . 36
5.3 Assessment of Explanatory Performance . 37
5.4 Model Behaviour Across Log Categories . 39
5.5 Evaluation of the Predictive Model . 43

5.6 Operational Dashboards . 47
5.6.1Access and Usage Dashboard Results . 48

5.6.2Application Errors Dashboard Results. 48

5.6.3JVM Stop-the-World (STW) Dashboard . 48

5.7 Discussion and Summary of Findings. 49

6 Conclusion. 52
References . 53

1

1
INTRODUCTION

Over the past decade, software systems have evolved toward increasingly dis-
tributed, heterogeneous, and data-intensive architectures, resulting in substantial growth
in the volume and complexity of operational data and shifting monitoring needs toward
the concept of observability, whose definition is the capability to infer a system’s internal
state from externally produced signals [1,2].

In contemporary production environments, the continuous generation of large vol-
umes of operational data that must be analyzed to sustain reliability, performance, and
availability manifests this trend, where modern applications can emit detailed records
of execution behavior, failure conditions, and contextual events across multiple opera-
tional signals.

Although indispensable for day-to-day operations, such data becomes increasingly
difficult to interpret at scale, particularly in systems that operate continuously and ex-
hibit complex, non-linear interaction patterns, and traditional monitoring approaches,
predominantly centered on metrics and static alert rules configured manually by sysad-
mins and operators, have proven insufficient for diagnosing issues in contemporary
distributed systems.

In environments where failures arise from subtle interactions across multiple com-
ponents rather than isolated faults, threshold-based alerts may indicate degradation
but also introduce visual clutter and limited insight into the underlying causes or re-
lationships between events. Additionally, operational logs, although rich in diagnostic
content, remain challenging to interpret due to their unstructured nature, fragmentation,
and volume. As system complexity grows, manual correlation of log events becomes
increasingly error-prone and time-consuming [3].

The expansion of log volume is accompanied by a corresponding increase in oper-
ational burden. Large organizations routinely collect and retain massive log datasets to
support troubleshooting, auditing, and performance analysis, often relying on platforms
such as the Elastic Stack for ingestion, indexing, and visualization [4, 5]. Despite the
maturity of these tools, operators are still required to manually inspect events, correlate
signals, and reconstruct execution timelines. This manual effort introduces cognitive
overload, delays incident resolution, and increases the risk of incomplete or inconsis-
tent diagnoses [1]. These limitations motivate the investigation of mechanisms capable

2

of augmenting human interpretation rather than replacing it.
Recent advances in Artificial Intelligence (AI), particularly in language-based mod-

els, have opened new possibilities for interpreting unstructured operational data. Transformer-
based models can process raw textual logs and generate structured summaries or ex-
planations that highlight relevant execution patterns [6–8]. At the same time, the litera-
ture consistently reports limitations related to ambiguity, lack of domain grounding, and
operational stability, especially in production environments subject to strict reliability,
privacy, and resource constraints [9,10].

These considerations are particularly relevant in on-premises settings, where fac-
tors such as data sovereignty requirements, compliance constraints, limited access
to specialized hardware, and the need for predictable and fully controlled execution
may restrict or delay the adoption of cloud-based inference and external dependen-
cies. In many organizations, these constraints coexist with technical and organizational
challenges, including the impracticality of migrating large legacy systems or refactor-
ing complex production environments, rather than indicating an inherent incompatibility
with public cloud technologies.

Within this context, this work proposes an observability-oriented architecture fo-
cused on log-centric analysis. The architecture combines a structured log-ingestion
pipeline with a local semantic-enrichment layer based on compact Small Language
Models (SLMs), designed to operate under realistic on-premises constraints. The pri-
mary objective is to evaluate whether semantic enrichment applied directly to raw oper-
ational logs can support interpretative diagnostic workflows in real production environ-
ments. Additionally, the architecture accommodates an auxiliary numerical forecasting
feature, applied to signals derived from operational logs and based on traditional ma-
chine learning techniques [11].

The proposed design emphasizes architectural decoupling and local execution, ex-
plicitly considering the heterogeneous and constrained conditions commonly found in
public-sector and enterprise environments. In such contexts, access to specialized
hardware is often limited, shared, or reserved for higher-priority workloads, while regu-
latory, architectural, or data-protection requirements impose constraints on deployment
models and execution environments. Consequently, observability solutions must com-
monly operate predictably on general-purpose infrastructure, coexist with other work-
loads, and remain deployable within controlled on-premises environments.

The central aim of this study is to design, implement, and evaluate a log-centric
observability architecture that integrates semantic enrichment based on compact AI
models, enabling efficient and scalable processing characteristics by design, while as-
sessing interpretability, execution stability, and practical viability under on-premises and
CPU-only constraints using real production log data.

The specific objectives of this study are:

3

• To design and implement a log-ingestion pipeline for large-scale collection and
indexing of operational logs, with structured enrichment;

• To develop a semantic-enrichment service based on compact AI models, produc-
ing interpretable insights from raw operational log events;

• To evaluate the proposed architecture using representative operational scenarios
and controlled experiments grounded in real production log data;

• To assess the interpretability, execution stability, and practical viability of semantic-
enriched logs under CPU-only execution constraints;

• To conduct a numerical forecasting experiment based on traditional machine learn-
ing techniques derived from raw operational log events as an auxiliary analytical
component.

The underlying hypothesis of this study is that semantic enrichment performed by
compact transformer-based models, when integrated into a structured log-centric ob-
servability pipeline, can produce consistent and operationally useful interpretations of
raw production logs under CPU-only execution constraints.

This chapter introduced the research context, problem definition, objectives, and
hypothesis. The remainder of this work is organized as follows:

• Chapter 2 presents the theoretical foundations and related work on observability,
log-processing challenges, and AI-assisted diagnostic approaches;

• Chapter 3 describes the methodological approach, including the log-ingestion
pipeline, the semantic-enrichment workflow, and the experimental design;

• Chapter 4 details the proposed observability-oriented architecture and its con-
stituent components;

• Chapter 5 reports the experimental evaluation and analysis of results, including
a complementary predictive modeling scenario;

• Chapter 6 concludes the study and outlines directions for future work.

4

2

2
LITERATURE REVIEW

2.1 EVOLUTION OF SOFTWARE AND PLATFORM ENGINEERING
The evolution of modern software architectures has reshaped how systems are de-

signed, deployed, and operated. Before introducing contemporary practices such as
DevOps, Site Reliability Engineering (SRE), and observability, it is essential to revisit
how traditional operational models functioned and why they became insufficient for in-
creasingly distributed and large-scale environments.

2.1.1 Legacy Monitoring Approaches
In earlier computing environments, system administrators (sysadmins) were primar-

ily responsible for managing complex IT infrastructures. This traditional model involved
integrating existing components to form a cohesive service and manually ensuring its
stability, including responding to incidents and applying updates [2].

As systems grew in complexity and traffic volume, incidents became more frequent,
leading organizations to expand their operations teams. Responsibilities were gradually
divided between development and operations due to differing skill sets and priorities [2].

Although this model was widely adopted and supported by a mature ecosystem
of tools, it introduced structural challenges. Manual interventions scaled poorly, and
the separation between development and operations often caused misaligned goals.
Developers focused on rapid feature delivery, while operations emphasized stability.
These conflicting priorities led to rigid operational controls, such as detailed checklists
and change approvals, and recurring conflicts between teams with distinct points of
view [2].

These limitations drove a gradual shift in operational models over the past three
decades. Industry practices evolved from reactive, infrastructure-centric monitoring
toward integrated reliability engineering and, more recently, telemetry-driven observ-
ability [2,3,12]. Figure 1 summarizes this progression.

1990s
Reactive
(sysadmin)

2000s
DevOps
(dev+ops)

2010s
SRE

(reliability)

2020s
Observability
(telemetry-driven)

Figure 1: Evolution of Operational Models

6

This evolution provides the conceptual foundation for understanding why traditional
monitoring approaches became insufficient for modern distributed systems and why
observability emerged as the next step in platform and reliability engineering [2,3].

2.1.2 Observability Concepts
To overcome the limitations of traditional monitoring in increasingly distributed en-

vironments, modern engineering practices adopted observability-oriented operational
models. Rather than focusing on predefined metrics or alerts, observability emphasizes
the ability to infer system behaviour from externally observable telemetry, supporting
diagnostic reasoning in complex and dynamic application architectures [1].

Logs
(event records)

Metrics
(quantitative indicators)

Traces
(request paths)

Figure 2: The three pillars of observability

Together, these pillars form the foundation required for diagnosing behaviour inmod-
ern distributed systems. However, when treated in isolation—without systematic cor-
relation or contextual interpretation—they reproduce limitations historically associated
with traditional Application Performance Monitoring (APM). In contrast, observability-
oriented approaches emphasize correlation across heterogeneous data sources and
support exploratory analysis in highly dynamic environments [1].

As a critical enabler of platform reliability, observability helps teams identify and re-
solve problems with reduced manual effort. It enables automated telemetry collection,
facilitates debugging, and supports real-time updates to monitoring systems. A highly
observable platform can detect and, in some cases, self-correct issues, reducing down-
time and improving developer productivity [1].

Observability also underpins DevOps practices by providing data-driven feedback
loops for continuous delivery and incident management. It supports root cause de-
tection, feature flag evaluation, and proactive verification using ML techniques. This
telemetry feedback strengthens CI/CD pipelines and helps platforms evolve based on
real usage patterns [13].

Ultimately, observability enables automated telemetry correlation and contextual
analysis to support decisions about system health, reliability, and user experience [1].

2.1.3 Monitoring vs. Observability
To contextualize the conceptual differences between these two operational models,

Figure 3 presents a high-level comparison of howmonitoring and observability organize
their data flows and diagnostic capabilities.

7

Traditional Monitoring Modern Observability

Centralized Polling

Metrics Only

Threshold-Based Alerts

Manual Root Cause Analysis

Distributed, Event-Driven Signals

Metrics + Logs + Traces

Correlation & Context Layer

Automated RCA & Insights

Figure 3: Conceptual architecture comparison between Monitoring and Observability

While Figure 3 summarizes the conceptual structure of both approaches, Table 1
details their practical differences across tools, data types, and troubleshooting strate-
gies.

The table below provides an overview of key differences between traditional mon-
itoring and modern observability. Legacy monitoring practices focus on predefined
metrics and system availability through centralized and reactive processes. In con-
trast, observability emphasizes broader visibility into distributed systems by correlating
multiple telemetry sources and supporting more proactive and data-driven operational
workflows.

As shown in Table 1, monitoring is reactive and limited to predefined metrics. Ob-
servability extends this model by enabling correlated insights across distributed compo-
nents, supporting more accurate diagnosis and improved operational decision-making.

A wide range of monitoring and observability tools has emerged to support differ-
ent operational environments. While traditional solutions focus on infrastructure-level
metrics, modern platforms integrate telemetry from multiple sources to provide broader
diagnostic capabilities. Table 2 summarizes representative tools and their typical usage
contexts.

As shown in Table 2, modern observability platforms depend on reliable log-ingestion
pipelines to support large-scale telemetry analysis. These pipelines are essential for
collecting, transforming, and centralizing operational data, forming the basis for the
architecture discussed in the next sections.

8

Table 1: Comparison Between Traditional Monitoring and Modern Observability Tools
Aspect Traditional Monitoring Modern Observability
Focus Metric collection and

system availability
Understanding internal
system state from
external signals

Typical Tools Zabbix, Nagios, Cacti,
MRTG

Prometheus, Grafana,
OpenTelemetry, Elastic
Stack

Data Types Primarily metrics and
simple alerts

Metrics, logs, traces, and
full-spectrum telemetry

Architecture Centralized, polling-based Distributed, agent-based,
with event-driven
pipelines

Scalability Limited in high-volume
environments

Highly scalable, designed
for cloud-native and
containerized systems

Troubleshooting
Approach

Manual, reactive,
rule-based alerts

Automated, proactive,
often AI-assisted root
cause analysis

DevOps/SRE Integration Low; infrastructure-centric High; integrated with
CI/CD pipelines and
service-level objectives
(SLOs)

Problem Resolution
Capability

Depends on human
expertise

Supports automated
diagnosis and prescriptive
insights

System Visibility Component-level metrics
(CPU, memory, disk)

Holistic view including
services, dependencies,
and user experience

9

Table 2: Comparison Between Monitoring and Observability tools
Tool Primary Focus Typical Usage Context
Zabbix Infra-level monitoring;

resource thresholds
(CPU, RAM, disk,
network)

Legacy systems and
static infrastructure with
sysadmin-centric
operation

Nagios Health checks, service
uptime, plugin-based
alerting

Traditional on-premises
environments requiring
minimal automation

Prometheus Time-series metrics
collection with alert rules;
integrates with Grafana

Containerized and
Kubernetes-native
architectures

Elastic Stack
(Elasticsearch,
Logstash, Kibana)

Centralized log
aggregation, search, and
visualization

Hybrid cloud or
large-scale systems
needing searchable,
indexed logs

2.1.4 Log Pipelines and the Elastic Stack
Modern observability practices rely not only on conceptual models but also on robust

pipelines capable of ingesting, transforming, and centralizing high-volume operational
logs. As applications generate increasingly heterogeneous telemetry—from application
logs to infrastructure events—organizations require architectures that reliably capture
unstructured data, enrich it with contextual metadata, and make it available for real-time
querying and visualization.

Figure 4 summarizes this end-to-end flow, highlighting the main stages through
which raw logs are collected, transformed, indexed, and finally visualized.

Filebeat
Log Shipper

Logstash
Parsing & Enrichment

Elasticsearch
Indexing & Search

Kibana / Grafana
Dashboards & Analysis

Figure 4: High-level log ingestion and analysis pipeline in the Elastic Stack

As shown in Figure 4, the Elastic Stack organizes log processing into a sequence of
specialized components. Each stage plays a distinct role in turning raw, heterogeneous
telemetry into structured and searchable operational data.

One of the most widely adopted platforms for large-scale log analysis is the Elastic
Stack, a log-centric observability solution composed of specialized components orga-
nized as an ingestion and analysis pipeline. Filebeat operates as a lightweight shipper
responsible for collecting and forwarding log events with minimal overhead, including

10

support for multiline reconstruction and secure transport [14]. Logstash provides the
transformation and enrichment layer, enabling structural normalization, pattern extrac-
tion through Grok and Dissect processors, conditional logic, and metadata augmenta-
tion [15].

At the core of the pipeline, Elasticsearch functions as a distributed search and an-
alytics engine optimized for high-volume semi-structured data. By indexing logs as
JSON documents backed by inverted indices, Elasticsearch enables low-latency full-
text search, aggregations, and correlation across heterogeneous telemetry sources
[4]. Visualization and exploratory analysis are supported by tools such as Kibana and
Grafana, which integrate directly with Elasticsearch to provide dashboards, contextual
inspection, and operational queries [5]. Together, these components transform raw and
fragmented logs into a unified, searchable, and analyzable operational data layer.

Despite these capabilities, the Elastic Stack still relies on human interpretation for
root-cause analysis, anomaly investigation, and the semantic understanding of com-
plex log patterns. As system complexity and log volume grow, these manual processes
become insufficient. This gap between log centralization and log comprehension moti-
vates the integration of Artificial Intelligence into observability pipelines. As explored in
the next section, AIOps techniques extend traditional pipelines with automated anomaly
detection, semantic pattern extraction, summarization, and contextual reasoning, en-
abling more intelligent and adaptive operational workflows.

Accordingly, this work does not claim advances in autonomous operations, focusing
strictly on interpretability and diagnostic support.

2.2 FOUNDATIONS FOR INTELLIGENT OPERATIONS
As manual log interpretation becomes insufficient in large-scale and highly dynamic

environments, the next step is the incorporation of Artificial Intelligence techniques ca-
pable of supporting automated reasoning, pattern detection, and adaptive decision-
making. This section introduces the main AI concepts required to understand how
these capabilities extend traditional observability practices.

2.2.1 Core Concepts of Artificial Intelligence
Artificial Intelligence (AI) is the field concerned with building systems capable of

perceiving, reasoning, and acting in pursuit of well-defined goals. It spans subfields
ranging from perception and learning to complex tasks such as diagnosis, planning,
and natural language understanding. Within this framework, a rational agent is one that
selects actions that maximize its expected performance, given its knowledge, goals,
and model of the environment [16].

Machine Learning (ML), a central subarea of AI, studies algorithms that improve
their performance through experience. ML is especially appropriate when explicit pro-

11

gramming is impractical—such as in pattern recognition or adaptive system tuning. By
learning statistical regularities from data, ML systems can detect patterns, adapt to
changing conditions, and make predictions at scale. Over time, the field has incorpo-
rated solid theoretical foundations that enable robust performance even in unfamiliar
environments [16].

Deep Learning (DL) extends traditional Machine Learning by learning hierarchical
representations capable of modeling complex and high-dimensional patterns [16]. Al-
though earlier architectures such as CNNs andRNNs have historical relevance, modern
log-analysis and language-understandingworkflows rely predominantly on Transformer-
based models. This shift reflects their superior ability to capture long-range dependen-
cies, represent semantic structure, and operate effectively in generative or interpre-
tative tasks. Within this context, compact decoder-only Transformers, like the Small
Language Models (SLMs), constitute the most practical class of models for CPU-only
semantic inference, which is the analytical focus of this study.

A fundamental distinction between traditional programming and Machine Learning
lies in how rules are produced. In classical software development, rules are manually
specified by the programmer; in ML, rules emerge automatically from data through
a training procedure. Figure 5 summarizes this contrast as originally formulated by
Mitchell (1997).

Input Data

Human-Coded Rules

Output

Input Data

Output

Learned Model / Rules

VS

Figure 5: Comparison between rule-based systems and machine-learning models

Machine Learning comprises three fundamental paradigms that define how mod-
els acquire knowledge from data. Supervised learning uses labeled examples to map
inputs to outputs; unsupervised learning identifies latent structures such as groups or
anomalies without labels; and reinforcement learning trains agents through interaction,
maximizing cumulative reward under uncertainty [16]. These paradigms provide the
conceptual basis for the evolution toward Deep Learning and Transformer-based ar-
chitectures discussed next.

12

Supervised Learning
Classification, Regression

Unsupervised Learning
Clustering, Anomaly Detection

Reinforcement Learning
Agents, Rewards

Figure 6: Main Machine Learning Paradigms

The shift to modern generative models begins with the Transformer architecture [6],
introduced by Vaswani et al. (2017). Transformers rely solely on self-attention, enabling
parallel computation and effective modeling of long-range dependencies. An early in-
fluential example is BERT, which uses a Masked Language Model (MLM) objective to
recover hidden tokens during training [7]. This encoder-only design remains central to
representation learning, classification tasks, and anomaly detection.

In contrast, decoder-onlymodels such asGPT (Generative Pre-trained Transformer)
adopt an autoregressive training objective, predicting the next token in a sequence [17].
This generative formulation underpins modern LLMs and their compact variants, the
Small Language Models (SLMs), which follow the same architectural principles with
reduced computational cost.

More recently, Generative AI (GenAI) has redefined intelligent systems. Built on
Transformer-based decoders, LLMs (Large LanguageModels) such asGPT-4 are trained
on massive textual corpora and support general-purpose language understanding and
generation [9] [18]. These models typically involve pretraining, task-specific tuning—
including Reinforcement Learning with Human Feedback (RLHF)—and deployment
for real-time inference. GenAI systems are increasingly applied in domains requiring
human-like responses, including IT support, content generation, and diagnostics.

The progression from general AI principles to specialized model families can be
summarized hierarchically. Figure 7 illustrates how Machine Learning, Deep Learning,
and Transformer-based language models form increasingly specialized subsets within
the broader field of Artificial Intelligence.

LLMs / SLMs
(Transformer-based Generative Models)

Deep Learning
(Neural Networks, CNNs, RNNs)

Machine Learning
(Supervised, Unsupervised, RL)

Artificial Intelligence
(Reasoning, Planning, Perception)

Figure 7: Hierarchy of Modern AI Techniques

13

Table 3: Comparison between BERT (MLM) and GPT (Autoregressive) Models
Aspect BERT GPT
Full Name Bidirectional Encoder

Representations from
Transformers

Generative Pre-trained
Transformer

Architecture Type Encoder-only (bidirec-
tional Transformer)

Decoder-only (autoregres-
sive Transformer)

Training Objective Masked Language Mod-
eling (MLM): predicts
masked tokens

Next-Token Prediction
(NTP): predicts next token
in sequence

Context Direction Bidirectional: uses left
and right context simulta-
neously

Unidirectional: uses left-
to-right context

Main Strength Representation learning
and classification tasks

Text generation and rea-
soning tasks

Typical Applications Classification, sentiment
analysis, anomaly detec-
tion, NER

Dialogue systems, code
generation, explanation,
summarization

Examples BERT, RoBERTa, Distil-
BERT, ALBERT

GPT-2, GPT-3, GPT-4,
Phi, Mistral

Within this study, the distinction between encoder-only and decoder-only Trans-
former models is operationally relevant. Encoder architectures such as BERT excel
at producing compact representations for classification or token-level discrimination,
but they are not naturally suited for generating coherent explanations from raw log
sequences. In contrast, decoder-only models — including compact Small Language
Models (SLMs) — operate autoregressively and can synthesize narrative, causal, and
context-rich interpretations of operational events. Because this work focuses on se-
mantic interpretability and diagnostic reasoning rather than classification, decoder-only
SLMs constitute the appropriate architectural choice, particularly under CPU-only con-
straints. Table 3 summarizes the main operational distinctions between BERT-like en-
coder models and GPT-like decoder models.

Together, these AI paradigms provide the theoretical foundation for the techniques
adopted in this work. The next section discusses how these capabilities contribute to
intelligent operational workflows.

2.2.2 Artificial Intelligence for IT Operations (AIOps)
Artificial Intelligence for IT Operations (AIOps) refers to the integration of AI tech-

niques, such as machine learning, pattern recognition, and automation—into the oper-

14

ational management of IT systems. This paradigm leverages AI’s ability to perceive,
reason, learn, and act within complex environments, fulfilling the engineering objective
of building intelligent entities capable of decision-making under uncertainty. In modern
IT infrastructures—marked by high dimensionality, distributed components, and fre-
quent state changes, AIOps becomes essential for processing telemetry data at scale
and supporting diagnostic reasoning beyond human cognitive capacity [16].

The architecture of AIOps is commonly described in terms of three conceptual pillars
that mirror the fundamental components of intelligent agents: data ingestion, intelligent
analysis, and automation.

• Data Ingestion: corresponds to the perception layer in agent-based models.
Logs, metrics, and events serve as percepts captured from the environment.
Techniques such as parsing, normalization, and information extraction transform
raw telemetry into structured representations. As highlighted by Russell and
Norvig, perception quality directly determines the quality of downstream reason-
ing: unreliable or noisy sensor data leads to inaccurate state estimates and sub-
optimal decisions [16]. In AIOps, this issue manifests as ingestion overload,
where massive log volumes require filtering and prioritization to avoid cognitive
and computational saturation.

• Intelligent Analysis: encompasses the reasoning and learning processes that
enable models to interpret operational data. Reasoning derives new conclusions
from existing knowledge, while learning improves future performance based on
observed patterns. This layer includes anomaly detection, summarization, causal
interpretation, and predictive modeling—each contributing to reducing operator
effort by structuring or contextualizing raw telemetry.

• Automation: reflects the action component of agent architectures, in which ana-
lytical outputs may trigger operational responses. In this research, automation is
treated solely as a conceptual element. The proposed architecture does not im-
plement autonomous agents, closed-loop remediation, or action-planning mech-
anisms. Instead, the study focuses exclusively on perception and interpretation,
using semantic enrichment to support human-centered diagnostic activities [16].

At the core of intelligent analysis lie the classical paradigms of machine learning—
supervised, unsupervised, and reinforcement learning—each contributing differently to
pattern identification and anomaly characterization. Supervised learning techniques,
such as decision trees, neural networks, and Support Vector Machines (SVMs), are
widely used for classifying system states (e.g., normal vs. anomalous) and predicting
operational conditions based on labeled historical data. When labeled datasets are
scarce, unsupervised learning, particularly clustering, enables the discovery of latent

15

structures and outliers in unlabeled telemetry. Probabilistic models, including Bayesian
networks, support uncertainty management and risk-aware decision-making in diag-
nostic contexts [16].

Overall, traditional machine learning techniques provide a solid baseline for anomaly
detection and failure prediction. Their computational efficiency, interpretability, and
stability make them practical for many operational workflows. When logs are properly
preprocessed, these models can deliver competitive results and remain important com-
ponents of intelligent diagnostic systems. In this study, however, their use is intention-
ally limited to an illustrative forecasting task, while semantic interpretation is conducted
exclusively through compact Transformer-based SLMs.

Beyond encoder–decoder distinctions, a broader architectural comparison is re-
quired for operational contexts. Under CPU-only constraints, Transformer-based SLMs
have gained adoption over recurrent or convolutional architectures due to their supe-
rior semantic modeling capacity, parallelizable attention mechanisms, and robustness
in handling unstructured textual sequences typical of log data.

The convergence of core AI principles—perception, learning, reasoning, and planning—
defines the conceptual trajectory toward intelligent operations. Although the architec-
ture proposed in this study intentionally excludes autonomous action components, the
theoretical underpinnings provided by Russell and Norvig frame how future expansions
could incorporate transparent decision-making, robust safety mechanisms, and adap-
tive behaviors aligned with human-defined operational objectives [16].

2.3 RELATED WORKS
Recent advancements in distributed systems and artificial intelligence have driven

a shift from passive monitoring to intelligent observability supported by semantic rea-
soning. This section reviews the most relevant academic and industrial contributions,
highlighting how current approaches address log analysis, anomaly detection, and AI-
assisted diagnostics. The discussion emphasizes the gap that motivates this work:
although the literature explores semantic interpretation using large and compact lan-
guage models, none provide an open, CPU-viable architecture for local semantic en-
richment integrated into a log-ingestion pipeline derived from real production telemetry.

2.3.1 Research Foundations and Related Studies
Bommasani et al. offer a foundational characterization of large-scale foundation

models, discussing emergence, transfer learning, and the methodological impact of
scaling [9]. While the work is not focused on observability, it establishes the conceptual
basis for understanding how languagemodels can generalize across downstream tasks
such as summarization, reasoning, and anomaly interpretation — capabilities relevant
to semantic log analysis.

16

Industry analyses from IBM highlight the transition from traditional monitoring to-
ward generative-AI-assisted observability. Their perspective suggests that LLMs can
summarize complex event streams, correlate signals, and assist operators during in-
cident investigation [19]. However, these systems remain augmentative rather than
autonomous and rely on cloud-based inference, leaving open the question of whether
compact, locally executed models can deliver consistent semantic insights without ex-
ternal dependencies — a key objective of this work.

Zhou et al. propose GLog, a self-evolving framework that uses instruction-tuned
LLMs combined with clustering to classify anomaly types directly from raw log se-
quences [20]. Their method avoids traditional parsing and demonstrates that gener-
ative models can capture log semantics effectively. Nonetheless, the system requires
fine-tuning and clustering pipelines, and does not evaluate inference feasibility under
constrained hardware or integrated ingestion environments, as addressed in this re-
search.

Videsjorden et al. develop LUMEN, which integrates multi-agent LLMs with knowl-
edge graphs to support observability in IoT environments [21]. By modeling infras-
tructure as a semantic graph and dynamically generating analysis code, the system
showcases how LLM-driven reasoning can augment operational workflows. However,
its reliance on agents, code generation, and large contextual structures differs from
this study’s focus on compact models performing direct semantic interpretation of logs
in CPU-only settings.

Kataria introduces a hierarchical multi-agent LLM framework to automate incident
investigation using specialized agents for logs, metrics, and traces [22]. The approach
demonstrates that separating reasoning tasks across models improves diagnostic ro-
bustness, but it requires cloud-scale computational resources unsuited for local envi-
ronments. This contrasts with the architectural constraint of the present work, which
evaluates lightweight SLMs under realistic on-premise hardware profiles.

2.3.2 Market Solutions and Industrial State of the Art
Commercial observability platforms demonstrate mature but closed—approaches to

AI-assisted diagnostics. Dynatrace employs deterministic causal reasoning embedded
in its Davis AI engine to compute dependency graphs and perform automated root-
cause analysis [23]. While effective, the platform’s internal logic is proprietary and un-
suitable for experimental evaluation or academic extensibility.

Datadog’s Watchdog provides automated anomaly detection across metrics, logs,
and traces, leveraging internal ML models and, more recently, generative AI for natural-
language investigations [24]. However, as a SaaS solution, it raises concerns regarding
data sovereignty, transparency, and the impossibility of local inference evaluation.

17

Table 4: Comparative overview of related works and market solutions
Work / Platform Observability /

Monitoring
AI / Model Role Limitations & Research

Gaps
Kataria
(2025) [22]

Distributed logs,
metrics, and traces

Hierarchical multi-
agent LLMs

High computational
cost; unsuitable for
resource-constrained
environments.

Zhou et al.
(2025) [20]

Log anomaly de-
tection

Self-evolving LLM
+ clustering

Focused solely on logs;
lacks integration with
metrics/traces.

Videsjorden et
al. (2025) [21]

IoT observability
via digital twins

Multi-agent analy-
sis with code gen-
eration

Depends on knowledge-
graph accuracy; limited
scalability in large IoT
settings.

Kreuzer et al.
(2024) [25]

No observability
focus

SLM-as-a-Judge Compact models reliable
in constrained tasks; lim-
ited in open-ended rea-
soning.

Zheng et al.
(2023) [26]

No observability
focus

LLM-as-a-Judge Potential evaluator bias;
no domain-specific log
assessment.

Chan et al.
(2023) [27]

No observability
focus

LLM-as-a-Judge
reliability

Robust in structured
tasks; variability across
domains.

Bommasani et
al. (2022) [9]

No observability
focus

Foundation Mod-
els

Conceptual scope; no im-
plementation for opera-
tional diagnostics.

Dynatrace [23] Full-stack observ-
ability

Deterministic
causal AI

Proprietary algorithms;
opaque decision logic;
high operational cost.

Datadog [24] Cloud-scale moni-
toring

Correlation +
anomaly detec-
tion; generative
insights

Closed SaaS; limited
transparency; vendor
lock-in concerns.

Splunk [28] SIEM + log aggre-
gation

Predictive ana-
lytics and event
correlation

High configuration over-
head; SPL presents
steep learning curve.

Table 4 summarizes the main academic and industrial approaches reviewed, high-
lighting their observability scope, the role assigned to AI models, and the remaining

18

research gaps. Although some of the included works are not explicitly focused on ob-
servability, they are intentionally incorporated due to their relevance to language-model
evaluation, semantic judgment, and methodological validation, which directly underpin
the methodological choices adopted in this work.

Splunk remains a dominant platform for Security Information and Event Manage-
ment (SIEM), a class of systems dedicated to the collection, correlation, and analysis
of security-related events for threat detection and compliance [29,30]. Despite its ana-
lytical capabilities, Splunk relies on the proprietary Search Processing Language (SPL)
for querying and correlating logs [31]. This dependence introduces a steep learning
curve and reinforces vendor lock-in, which, combined with high operational and licens-
ing costs, limits transparency, portability, and extensibility when compared to open and
log-centric observability pipelines [32].

Industrial platforms demonstrate advanced AI-assisted observability capabilities,
but typically rely on proprietary models, cloud-based processing, or resource-intensive
execution environments. As a result, they do not prioritize the evaluation of compact
Transformer models executed locally, nor their integration into open and customizable
log-ingestion pipelines such as the Elastic Stack, which defines the specific scope and
contribution of this work.

Table 4 summarizes the main academic and industrial approaches reviewed, high-
lighting their scope, analytical focus, and remaining limitations. Although some of the
included works are not explicitly focused on observability, they are intentionally incor-
porated due to their relevance to language-model evaluation, semantic judgment, and
methodological validation, which directly underpin the methodological choices adopted
in this work.

Industrial platforms therefore demonstrate AI-enhanced observability under tightly
controlled conditions, relying on proprietary models whose architectures, training data,
and inference mechanisms are not transparent or modifiable by the user. These solu-
tions typically depend on cloud-hosted processing and high-resource execution envi-
ronments, limiting reproducibility, customization, and on-premises deployment. In con-
trast, they do not investigate compact Transformer models executed locally, nor their
integration into customizable ingestion pipelines such as the Elastic Stack—precisely
the gap addressed in this work.

In summary, the reviewed literature shows substantial progress in anomaly de-
tection, semantic log interpretation, and AI-assisted observability. Academic works
demonstrate that both LLMs and compact SLMs can extract structure from unprocessed
logs, support diagnostic reasoning, and generalize across heterogeneous telemetry.
Industrial platforms, in turn, deliver mature solutions but rely on proprietary engines,
opaque decision processes, and resource-intensive cloud infrastructures.

Despite these advances, no existing approach provides an open, reproducible, and

19

CPU-feasible architecture that integrates compact Transformer models directly into a
log-ingestion pipeline constructed from real operational telemetry. This gap defines the
motivation for the present study: to evaluate small decoder-only models for semantic
enrichment within an Elastic Stack workflow, supporting local inference, methodological
transparency, and practical applicability under constrained environments.

Taken together, the academic and commercial works reviewed demonstrate signif-
icant progress in AI-assisted observability, but they do not converge toward an open
and locally deployable solution tailored to constrained operational environments.

2.4 SYNTHESIS AND RESEARCH GAP CONSOLIDATION
The literature reviewed indicates a persistent gap between recent research ad-

vances and practical observability deployments. While multiple academic and industrial
approaches explore semantic interpretation of operational logs using language mod-
els, the integration of lightweight, CPU-efficient models directly into operational log-
ingestion pipelines remains insufficiently addressed.

Moreover, existing solutions tend to treat semantic interpretation and numerical
telemetry analysis as isolated concerns, without explicitly delimiting their complemen-
tary roles within observability workflows. This gap motivates the present study, which
investigates the use of compact decoder-only language models for semantic log enrich-
ment within a log-centric pipeline, under realistic on-premises and resource-constrained
conditions.

Based on this synthesis, the next chapter presents themethodological design adopted
in this work.

20

3

3
METHODOLOGY

3.1 METHODOLOGICAL DESIGN OVERVIEW
This section provides a high-level overview of the methodological design adopted

in this study. Before detailing each methodological component individually, the com-
plete workflow is presented to clarify how data collection, semantic enrichment, and
evaluation stages are structurally connected.

Figure 8: Methodological structure integrating real production logs pipeline with seman-
tic enrichment, predictive modelling and integrated evaluation.

As illustrated in Figure 8, the methodological workflow begins with the collection
of one year of operational telemetry from a large-scale government production system,
previously anonymized and normalized. The raw log records are then processed by the
semantic enrichment pipeline based on Small Language Models, which produces in-
terpretable labels and contextual information not present in the original logs. Within the
same architectural workflow, numerical telemetry derived from the operational logs is in-
corporated as an auxiliary analytical component, where traditional supervised learning
techniques are applied to assess the predictability of specific operational phenomena,
such as JVM garbage-collection pressure. Finally, the consolidated outputs support
the analysis of operational patterns and inform the assisted diagnostic process.

22

3.2 TYPE AND RESEARCH APPROACH
This research adopts an exploratory, applied, and case-based methodological ap-

proach. Exploratory, because heterogeneous and semantically rich operational logs re-
quire open-ended analysis to reveal patterns not visible through conventional metrics. It
is applied, because the study focuses on implementing and evaluating techniques that
can be realistically adopted in IT operations environments. It is case-based because
the dataset originates from a complex Brazilian government sector production system,
whose behavior cannot be replicated through synthetic workloads. This dataset com-
prises one year of operational telemetry obtained from a Brazilian public institution and
is not publicly available due to confidentiality and institutional restrictions. The data
were previously anonymized and normalized through an Elastic Stack pipeline, ensur-
ing ethical handling of sensitive information while preserving the semantic structure
required for reproducibility and downstream analysis.

3.3 LOG ENRICHMENT STAGE
Traditional observability pipelines expose numerical indicators such as counters,

latencies, and error rates, but they do not explain why events occur or how they re-
late to broader system behaviour. As distributed environments scale into hundreds
of services, anomalies rarely appear in isolation, and operators must manually corre-
late fragmented, high-volume logs under stringent time constraints. Small Language
Models (SLMs) offer a potential mechanism for augmenting this process by producing
concise, context-aware explanations directly from raw textual events.

Two compact decoder-only Transformer models were selected for evaluation: Phi-3
Mini and Mistral-7B. This selection reflects a deliberate methodological focus on mod-
els that can be executed locally under realistic on-premises and CPU-only constraints,
rather than an attempt to exhaustively survey the space of available language models.

Cloud-hosted models, such as GPT-4, were not considered in this study. While
these models demonstrate strong generative capabilities, their reliance on external in-
ference infrastructure, proprietary APIs, and opaque execution characteristics intro-
duces constraints related to data locality, reproducibility, and latency predictability that
fall outside the scope of the target operational environment [9]. For this reason, the
present work concentrates on locally deployable models whose execution characteris-
tics can be directly observed and controlled.

Models from the LLaMA family were likewise not included in the experimental eval-
uation. Although they support local execution, existing studies report higher memory
requirements and increased latency variability under CPU-only inference when com-
pared to more compact architectures, particularly in quantized settings [33,34]. Given
the emphasis of this work on execution stability and predictable behaviour, these mod-
els were considered less aligned with the constraints under investigation.

23

Within this context, Phi-3 Mini and Mistral-7B represent two complementary design
points in the space of compact transformer-based models, balancing semantic expres-
siveness and operational feasibility. Their selection enables a controlled evaluation
aligned with the objectives of this study, as summarized below:

• Deployability: Both models were executed in 4-bit quantized form, reducing
memory footprint and computational cost while preserving sufficient semantic ca-
pacity for explanatory tasks. This enables local, CPU-only inference on commod-
ity hardware, consistent with realistic on-premises constraints.

• Architectural Representativeness: Mistral-7B and Phi-3 Mini embody distinct
design priorities within the class of compact transformer models. Mistral-7B em-
phasizes broader generative and reasoning capacity, whereas Phi-3 Mini priori-
tizes efficiency and execution stability. Evaluating both allows comparison across
these dimensions without altering the architectural context.

• Operational Interpretability: In environments where thousands of heteroge-
neous log events are generated per minute, the models are evaluated on their
ability to condense fragmented evidence into concise, human-readable explana-
tions that support diagnostic reasoning and incident triage.

• Controlled Evaluation: Bothmodels were evaluated under identical conditions—
using the same log inputs, inference configurations, and CPU-only execution
environments—ensuring that observed differences arise from model character-
istics rather than experimental artifacts.

This methodological choice is consistent with recent evidence indicating that com-
pact transformer models can deliver stable and interpretable explanations under con-
strained inference settings, supporting their use in operational observability pipelines
[25].

Representative logs were extracted directly from the dataset and supplied to the
SLMs without feature engineering, reflecting realistic event and incident-response con-
ditions. Two inference configurations, denoted as A and B, were defined as controlled
execution profiles to contrast concise and extended explanatory outputs, enabling the
assessment of observable effects on latency and output characteristics under identical
execution conditions. The evaluation corpus consisted of twelve representative log in-
stances covering major operational categories, including GC pauses and humongous
allocations; SQL timeouts and lock contention; external API timeouts; application-layer
exceptions; context-initialization failures; near–Out-of-Memory conditions; and latency
anomalies correlated with garbage-collection activity. This selection exposes the mod-
els to a broad spectrum of semantic patterns present in the production environment.

24

Each log instance sampled from the dataset was processed ten times across all combi-
nations of hardware profile, model, and inference configuration, yielding a total of 960
inference executions. For each run, the pipeline collected the following metrics:

• Latency (ms): end-to-end inference time;

• Tokens-in: input size derived from the log content;

• Tokens-out: length of the generated explanation.

In operational settings, higher input token counts are primarily driven by increased
log verbosity, whereas output token counts reflect the verbosity and explanatory depth
of the generated responses. Together, these computational metrics complement the
qualitative assessment by linking explanatory behaviour to practical deployability within
log-centric observability workflows.

3.4 COMPLEMENTARY PREDICTIVE MODELLING
A complementary predictive modelling stage was conducted using Garbage Collec-

tion (GC) telemetry. This component serves two methodological aims: (i) to quantify
how GC pressure behaves over time in a JVM-based system, and (ii) to establish a
baseline illustrating the capabilities and limitations of classical Machine Learning when
restricted to numerical telemetry. The GC dataset was reformulated as a binary clas-
sification problem: Will a GC pause occur within a predefined temporal horizon? Four
models were evaluated — Random Forest, XGBoost, LightGBM, and a feed-forward
neural network (Multi-Layer Perceptron), using standard supervised-learning evalua-
tion metrics derived from the confusion matrix and ROC analysis [35]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall = TP

TP + FN
(3)

F1-score = 2 · Precision · Recall
Precision+ Recall

(4)

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

25

Accuracy (Eq. 1) measures overall classification correctness. Precision (Eq. 2) and
Recall (Eq. 3) capture, respectively, the reliability of positive predictions and the sen-
sitivity to actual positive events. The F1-score (Eq. 4) provides a harmonic balance
between Precision and Recall.

All metrics are derived from the confusion matrix, where True Positives (TP) denote
correctly identified positive events, True Negatives (TN) represent correctly identified
negative events, False Positives (FP) correspond to normal events incorrectly classified
as anomalies, and False Negatives (FN) indicate missed positive events.

Receiver Operating Characteristic (ROC) analysis is based on the relationship be-
tween the True Positive Rate (TPR, Eq. 5), defined as TP/(TP + FN), and the False
Positive Rate (FPR, Eq. 6), defined as FP/(FP+ TN).

The predictive modeling stage provides quantitative signals derived from the nu-
merical telemetry contained in operational logs. In this context, the evaluated metrics
support the analysis of memory-pressure behaviour and help identify periods in which
GC pauses tend to intensify, enabling visualization through dashboards and supporting
routine operational investigations.

This modeling stage is intentionally limited to numerical telemetry. For free-text
log messages, traditional Machine Learning approaches would require additional pre-
processing steps such as parsing, vectorization, and feature engineering, including
techniques like Term Frequency–Inverse Document Frequency (TF–IDF) and others
[36]. In this work, these steps were deliberately avoided in favor of semantic enrich-
ment using Small Language Models, which operate directly on raw textual logs and
preserve contextual information without manual feature construction.

26

4

4
PROPOSED SOLUTION

4.1 ARCHITECTURAL DESCRIPTION
This section presents a structured and technically grounded description of the sys-

tem architecture. The organization and behaviour of the components are described
using a multi-view approach inspired by the arc42 architectural model, specifically the
Building Block, Runtime, andDeployment views, as introduced by Starke andHruschka [37].
This approach is suitable for systems that integrate log ingestion, distributed process-
ing, and AI-based enrichment, as it separates structural, behavioural, and operational
concerns, making architectural decisions explicit and verifiable.

4.1.1 Building Block View
The system is organized into functional layers comprising ingestion, storage, an-

alytics, and visualization. Each layer encapsulates a well-defined set of responsibili-
ties. The ingestion layer captures and normalizes operational logs; the storage layer
maintains indexed documents and supports low-latency retrieval; the analytics layer
performs log-centric semantic enrichment and numerical telemetry analysis; and the
visualization layer exposes consolidated information for operational inspection. Fig-
ure 9 summarizes these elements and their static relationships.

4.1.2 Runtime View
The Runtime View describes component interactions during execution and the flow

of data across the architecture. Logs collected by Filebeat are parsed and normalized
by Logstash before being indexed in Elasticsearch. The Inference Engine assumes
both producer and consumer roles over Redis: it selects documents from Elasticsearch,
enqueues them for processing, retrieves pending tasks, executes local inference us-
ing quantized models hosted in Ollama, and stores enriched results back into Elastic-
search. In parallel, numerical telemetry derived from the same log stream is processed
by predictive routines operating on structured signals. Figure 10 depicts these interac-
tions.

28

Fi
gu
re
9:

Bu
ild
in
g
Bl
oc
k
Vi
ew

of
th
e
ar
ch
ite
ct
ur
e.

29

Fi
gu
re
10
:R

un
tim

e
Vi
ew

sh
ow

in
g
th
e
op
er
at
io
na
ld
at
a
flo
w
ac
ro
ss

co
m
po
ne
nt
s.

30

4.1.3 Deployment View
All components are deployed as Docker containers on a single host. This deploy-

ment strategy reflects typical on-premises virtualized environments in the public sector,
where observability workloads operate on shared infrastructure with constrained CPU
and memory resources. Consolidating services on a single host reproduces realistic
contention patterns and latency sensitivity, enabling the observation of architectural
behaviour under CPU-only inference without introducing horizontal scalability assump-
tions beyond the scope of this work.

Containerization promotes reproducibility and portability by encapsulating each com-
ponent within a controlled execution environment. Elasticsearch and Ollama rely on
persistent volumes to ensure data durability andmodel availability, while Redis provides
centralized asynchronous coordination. Grafana accesses Elasticsearch to support the
visualization layer and operational dashboards. The Inference Engine is deployed as
independent containers assuming producer and consumer roles over Redis, enabling
asynchronous execution without tight coupling between components. Figure 11 sum-
marizes the container-level topology.

Figure 11: Deployment View of the system as a set of Docker-based services.

4.2 ARCHITECTURALCONSIDERATIONSANDREPRESENTATIVE
SCENARIOS

The architectural design, integration strategy, and operational validation were de-
fined and executed within the scope of this research. All architectural decisions, com-
ponent integrations, and validation procedures were therefore conducted as part of the
research design. The proposed architecture was designed to support log-centric inter-
pretability under constrained on-premises conditions, explicitly accounting for resource
contention, asynchronous processing, and analytical consistency. Technology selec-
tion follows architectural requirements rather than tool-specific preferences:

31

• Elasticsearch was adopted as the primary storage and indexing component due
to its native support for semi-structured log data, time-oriented queries, and low-
latency retrieval under sustained write workloads, which are central to log-centric
observability architectures.1

• Redis was employed as an asynchronous coordination mechanism to decouple
ingestion, semantic enrichment, and telemetry analysis workloads, providing or-
dered message processing and backpressure control without introducing heavy-
weight messaging infrastructures.2

• Inference Engine services, implemented as lightweight Python–Flask compo-
nents, act as the execution layer for semantic enrichment, coordinating log re-
trieval, task dispatch, and CPU-bound inference execution.3

• Ollama was selected as the local model runtime to enable CPU-only execution
of quantized Small Language Models, ensuring predictable inference behaviour,
local model control, and compliance with on-premises deployment constraints.4

• Telemetry Module, also implemented as lightweight Python-Flask components,
was included as a dedicated analytical capability responsible for numerical signal
extraction and predictive analysis over structured telemetry derived from logs.
This module operates independently from semantic enrichment while sharing the
same data sources and asynchronous coordination infrastructure.5

• Grafana was adopted as the visualization layer due to its operational orientation,
native integration with Elasticsearch, and interoperability with infrastructure mon-
itoring and alerting ecosystems commonly used in production environments.6

Together, these choices support a cohesive and unified architecture aligned with
on-premises constraints, asynchronous processing requirements, and predictable op-
erational behavior.

1https://www.elastic.co/elasticsearch
2https://redis.io/
3https://flask.palletsprojects.com/
4https://ollama.com
5https://scikit-learn.org/stable/
6https://grafana.com

32

5

5
RESULTS AND DISCUSSION

This section presents the execution environment, the dataset of logs, the evaluated
models, and the total number of executions. It also summarizes the collected metrics
and the objective of the experiment.

5.1 EXPERIMENTAL SETUP
The experiment was executed locally on two different hardware profiles to evalu-

ate the behaviour of small language models under constrained and high-performance
CPU environments. All executions were performed using CPU-only inference. GPU
acceleration was explicitly disabled through container-level environment configuration,
ensuring that all inference was executed exclusively on CPU, following the same oper-
ational script and repeating each run ten times per log, per model, and per configuration
to measure dispersion and stability.

The dataset consists of twelve operational logs extracted from a Brazilian govern-
ment production system, previously anonymized and enriched through an Elastic Stack
pipeline. These logs represent heterogeneous failure modes, including initialization er-
rors, garbage-collection pressure, timeouts, and mixed degradation scenarios. All logs
were submitted to the SLMs using the same prompt structure and the same inference
parameters described in the methodology.

Two families of models were evaluated: Mistral-7B (quantized 4-bit) and Phi-3 Mini
(3.8B, quantized 4-bit). Each model was tested under two inference configurations (A
and B), differing only in generation limits such as maximum tokens and temperature.
Both configurations were executed on both machines.

The experiment was conducted on two hardware profiles selected to represent dis-
tinct computational conditions relevant to CPU-only inference. The first corresponds to
a constrained workstation, while the second reflects a modern high-performance archi-
tecture. Their characteristics influence the behaviour of quantizedmodels and therefore
must be reported.

34

12 Operational Log Types
2 Machines
(i5, i9)

2 Models
(Mistral-7B, Phi-3 Mini)

2 Configurations
(A, B)

10 Repetitions

12× 2× 2× 2× 10 = 960
Total inference runs

Figure 12: Experimental execution volume across log types, hardware profiles, models,
configurations, and repetitions.

The experiment was conducted on two hardware profiles selected to represent dis-
tinct computational conditions relevant to CPU-only inference. The first corresponds
to a constrained workstation, while the second reflects a modern heterogeneous CPU
architecture. Their characteristics influence the behaviour of quantized models and
therefore must be reported.

• i5-3470 (Machine 1): Intel processor with 4 cores and 4 threads, base frequency
of 3.2 GHz (up to 3.6 GHz turbo), 16 GB RAM, and SATA SSD. This processor
supports only the first generation of AVX instructions, which limits vector width
and constrains the throughput of low-precision inference kernels.

• i9-14900K (Machine 2): Intel processor with 24 cores (8 performance cores and
16 efficiency cores) and 32 threads, base frequencies of 3.2 GHz (P-cores) and
2.4 GHz (E-cores), boost frequencies up to 6.0 GHz, 64 GB RAM, and NVMe
SSD. Performance cores (P-cores) are optimized for high-throughput and low-
latency workloads, while efficiency cores (E-cores) are designed for energy-efficient
background and parallel tasks. This architecture supports AVX2, enabling wider
vector operations and higher throughput for quantized inference.

Clock frequencies are reported asmanufacturer base and boost specifications. Dur-
ing execution, dynamic frequency scaling and turbo mechanisms were managed by the
operating system scheduler and were not explicitly constrained. These two profiles al-
low observing how differences in clock frequency, vector instruction support (AVX vs.
AVX2), and heterogeneous core design (performance and efficiency cores) affect the
behaviour of quantized SLMs, without altering any other component of the experimen-
tal setup. All runs were performed using Ollama as the local inference engine. GPU
acceleration was explicitly disabled at container level through environment configura-
tion, ensuring CPU-only inference. System monitoring was carried out using standard
operating-system tools (top, htop) and Grafana dashboards to visualize CPU satura-
tion patterns and temporal variability.

35

Table 5: Summary of experimental setup: hardware, models, configurations, and exe-
cution volume.

Component Specification / Value
Hardware Profiles i5-3470 (4C/4T, 3.2–3.6GHz, AVX)

i9-14900K (24C/32T, P+E cores, up to 6.0GHz, AVX2)
Models Evaluated Mistral-7B 4-bit, Phi-3 Mini 3.8B 4-bit
Inference Engine Ollama (CPU-only)
Configurations A (short output), B (extended output)
Log Dataset 12 types of production logs, enriched and anonymized
Repetitions 10 runs per log, model, config and machine
Total Executions 960 runs

Figure 13: Latency distribution for Mistral-7B and Phi-3 Mini across Machine 1 and
Machine 2 hardware profiles.

5.2 INFERENCE PERFORMANCE ANALYSIS
The latency measurements exhibit systematic differences across hardware profiles

and model families. Machine 2 consistently achieves lower median latency, reduced
dispersion, and absence of long-tail behaviour. By contrast, Machine 1 operates near
full saturation, producing higher variance, recurrent spikes, and extended latency tails,
especially for Mistral-7B. Phi-3 Mini maintains a compact and predictable latency band

36

across both machines. Repeated executions confirm negligible variability on the Ma-
chine 2 and moderate variability on the Machine 1.

The histogram highlights the contrast between machines: the Machine 2 exhibits a
narrow, stable latency band, whereas the Machine 1 shows wide dispersion and long-
tail behaviour. Both machines reach 100% CPU usage, but only the Machine 2 briefly
recovers between inference cycles. Mistral-7B presents higher medians, wider disper-
sion, and numerous outliers. Phi-3 Mini remains stable and predictable, confirming that
model size is the primary determinant of runtime stability under CPU constraints.

Figure 14: Latency distribution for Mistral-7B and Phi-3 Mini aggregated across all suc-
cessful executions.

5.3 ASSESSMENT OF EXPLANATORY PERFORMANCE
Before executing the experimental pipeline, exploratory runs were performed to

identify decoding parameters that could affect explanation length and determinism un-
der CPU-only inference. These initial tests ensured that the models would operate
without stochastic variation that could distort comparative analysis.

Based on these tests, two fixed and deterministic inference configurations were
defined. Configuration A limits output depth and sampling flexibility, producing concise
explanations with lower computational cost. Configuration B permits longer reasoning
chains while maintaining deterministic generation and full comparability across runs.

These configurations act as controlled semantic settings, ensuring that observed
differences arise frommodel architecture and log structure rather than randomdecoding

37

behaviour. Because output length was bounded by configuration-specific generation
limits, tokens-out remained stable and did not influence latency variability.

The explanatory behaviour of the two models shows clear and consistent differ-
ences relevant to operational diagnostics. Mistral-7B generates longer and more elab-
orated explanations, often integrating events distributed across the log and construct-
ing a broader narrative of the failure scenario. In logs dominated by garbage-collection
pressure, this model tends to incorporate multiple log segments and describe memory-
related degradation over time.

Phi-3 Mini, in contrast, produces more concise and direct outputs, prioritizing the
identification of garbage-collection pressure as the dominant failure mode and its imme-
diate operational implications. This behaviour is well suited for initial diagnostic triage
and rapid interpretation under constrained environments.

These distinct explanatory styles are particularly evident in logs containing long tem-
poral sequences, multi-stage cascades, or sustained GC activity. The qualitative differ-
ences observed are consistent with the measured variations in output length, latency,
and variance reported in the previous section.

Across all executions, both models received identical input prompts and identical
log contents, resulting in comparable token-in volumes for each log category. Observed
differences therefore arise primarily from output-generation behaviour rather than from
variations in input size.

Phi-3 Mini consistently produced shorter and more direct outputs, typically summa-
rizing the dominant failure mode and its immediate operational impact. Mistral-7B gen-
erated longer explanations, frequently integrating multiple log segments and describing
temporal progression across the execution timeline. This behaviour resulted in higher
token-out counts and increased inference latency, particularly for logs dominated by
garbage-collection pressure.

This contrast is consistent with expectations reported in the literature on language-
model scaling, where larger models tend to generate more elaborated and context-
integrative explanations, while smaller models favour concise and directive outputs.
In this sense, the observed behaviour of both Phi-3 Mini and Mistral-7B aligns with
their respective model capacities and design trade-offs, without exhibiting anomalous
or unexpected explanatory patterns.

Bothmodels correctly identified the dominant failure categories present in the dataset,
including application initialization faults, memory-pressure indicators associated with
garbage-collection activity, repeated GC cycles, timeout manifestations, and external-
dependency failures. Rather than providing exact quantitative accuracy measures for
semantic correctness, the evaluation focused on qualitative diagnostic adequacy, con-
firming that the generated explanations consistently captured the primary operational
issue and its most relevant consequences, such as response-time degradation or par-

38

tial service unavailability.
Limitations emerge mainly in logs exhibiting overlapping symptoms or incomplete

execution traces. Under these conditions, both models may emphasise secondary ef-
fects or simplify complex causal relationships, reflecting the inherent difficulty of in-
terpreting heterogeneous operational logs under CPU-only execution and quantized
inference constraints.

Figure 15 shows that inference latency does not scale proportionally with input size.
Prompt-encoding cost remains negligible when compared to architectural and hardware
factors. Mistral-7B consistently exhibits higher latency than Phi-3 Mini, reflecting its
larger parameter count and heavier decoding workload [38]. Machine 2 outperforms
Machine 1 across all conditions, reducing both median latency and variance. Larger
prompts primarily intensify CPU saturation effects on the constrained hardware profile,
without producing a linear growth trend in latency.

Taken together, these results demonstrate that the semantic structure of operational
logs and the computational profile of the selected language model jointly determine the
feasibility of log-centric semantic enrichment. This empirical evidence directly supports
the architectural choices adopted in this study and grounds the conclusions presented
in the final section.

Under the evaluated conditions, Phi-3 Mini is operationally viable, while the potential
advantages of Mistral-7B can be reassessed in future work involving parameter-efficient
fine-tuning and retrieval-augmented generation [39].

Figure 15: Median latency as a function of input size (tokens-in) across models and
hardware profiles.

39

5.4 MODEL BEHAVIOUR ACROSS LOG CATEGORIES
The twelve logs were grouped according to their dominant operational pattern, based

on a technical curation performed by the author. This curation was guided by domain
knowledge of Java enterprise applications deployed on application servers such as
WildFly, where operational failures in production environments consistently concen-
trate around two structurally distinct axes: application initialization and JVM runtime
execution.

Initialization failures correspond to errors occurring during the bootstrap phase of
the application server. In Java EE / Jakarta EE environments, this includes failures
related to CDI and bean resolution, dependency injection, datasource configuration,
JPA/Hibernate initialization, module loading, and context startup. These failures pre-
vent the application from reaching a stable operational state and typically generate
short, dense, and highly deterministic log sequences. Logs dominated by such be-
haviour were grouped into the Initialization Failures cluster (Cluster A).

Garbage-collection pressure represents the dominant class of runtime degradation
in JVM-based systems. Memory exhaustion, near–out-of-memory conditions, repeti-
tive full GC cycles, prolonged stop-the-world pauses, and heap fragmentation emerge
progressively during execution and produce long, temporally correlated log sequences.
Operational symptoms such as API timeouts, database delays, and thread-pool satu-
ration frequently arise as secondary effects of sustained GC pressure rather than as
independent failure mechanisms. Logs dominated by this behaviour were grouped into
the Garbage-Collection Pressure cluster (Cluster B).

Based on this architectural understanding, two mutually exclusive semantic clus-
ters were defined: initialization failures and garbage-collection pressure. Each log was
assigned to a single cluster according to its prevailing failure mechanism, even when
secondary symptoms were present. Timeout-related manifestations were therefore not
treated as an independent semantic class, but as effects associated with one of the two
primary failure axes. This approach avoids hybrid classifications and provides a consis-
tent analytical structure aligned with the operational realities of Java-based production
systems. The resulting classification is summarized in Table 6.

Due to an execution failure during data collection on Machine 1, as shown in Ta-
ble 16, Log 12 was not fully processed, resulting in a single missing log-hardware com-
bination, where blank cells in the figures indicate unexecuted combinations. All other
logs types were executed as planned, and this omission does not affect the overall
experimental conclusions. Variability increases when the hardware is saturated, the
model is computationally heavy, or the log spans long temporal sequences.

40

Table 6: Summary of log types, operational characteristics, and semantic clusters.
Log Type Synthesis Semantic Cluster
01 Initialization failure Bean/Dependency crash A
02 GC pressure Near-OOM B
03 Initialization failure Context refresh failure A
04 GC pressure Repetitive Full GC cycles B
05 GC pressure Critical heap usage B
06 GC pressure Long GC cycles B
07 Initialization failure Bean resolution failure A
08 Timeout-related failure API degradation (secondary) A
09 GC pressure GC-dominant degradation B
10 Initialization failure Bean-related failure A
11 Initialization failure Bean-related failure A
12 GC pressure Severe memory pressure B

Initialization-failure logs (Cluster A: 01, 03, 07, 10, 11) are structurally short and con-
tain concentrated error sequences. They consistently produce lower latency for both
models, with narrow error bars, particularly on the Machine 2. Their compact structure
reduces the explanatory workload of the models, leading to highly stable performance
for Phi-3 Mini and only moderate dispersion for Mistral-7B under Machine 1 saturation.

Figure 17 summarises the mean latency and the corresponding run-to-run variabil-
ity for each log across models and hardware profiles. Beyond architectural differences
between SLMs and CPUs, the results show systematic effects associated with the se-
mantic category of each log.

GC-pressure logs (Cluster B: 02, 04, 05, 06, 12) impose a markedly heavier work-
load. These logs contain extended temporal progressions, repetitive garbage-collection
cycles, near-OOM sequences, and long memory-pressure patterns. As a result, both
models exhibit highermean latency and significantly larger standard deviations. Mistral-
7B is strongly affected: its latency rises sharply, with wide dispersion on the Machine
1 due to sustained CPU saturation. Phi-3 Mini, although slower than in Cluster A, pre-
serves a compact variance profile, confirming its predictable behaviour in CPU-only
inference.

Logs that exhibit timeout symptoms (e.g., API degradation and retry cascades) were
not treated as an independent semantic cluster. In JVM-based systems, such symp-
toms frequently emerge as secondary effects of underlying initialization failures or sus-
tained garbage-collection pressure. Accordingly, logs dominated by timeout manifes-
tations were assigned to the cluster corresponding to their primary failure mechanism,
preserving the mutual exclusivity of the classification.

Across all categories, hardware effects remain stable: Machine 2 systematically

41

reduces inference latency and compresses the error bars, while Machine 1 amplifies
variance, particularly for Mistral-7B. Importantly, the relative ordering between log clus-
ters remains consistent across machines and models: GC-pressure logs are always
the most computationally demanding; timeout logs show intermediate behaviour; and
initialization failures remain the least costly.

These results demonstrate that inference cost is jointly shaped by model size, hard-
ware capabilities, and the semantic structure of the operational log. Logs dominated by
long temporal sequences and cumulative state evolution, such as garbage-collection
pressure, consistently impose higher computational overhead on SLM-based diagnos-
tic workflows under constrained CPU environments.

Figure 16: Run-to-run latency variability (standard deviation) across logs, models, and
hardware profiles.

42

Figure 17: Mean latency with standard deviation across logs, models, and hardware.

5.5 EVALUATION OF THE PREDICTIVE MODEL
Predictive experiments evaluated whether classical ML models can anticipate GC

pauses at horizons of 30 seconds, 30 minutes, and 60 minutes, as summarized re-
spectively in Tables 7, 8, and 9. Precision is the critical metric because GC pauses
are relatively infrequent events, and each false positive introduces operational noise:
it triggers unnecessary alerts, distorts the interpretation of memory pressure, and con-
taminates dashboards with misleading signals. A model that frequently predicts GC
pauses when none will occur imposes real cost on operators by increasing triage effort
and reducing trust in monitoring outputs. High precision therefore ensures that positive
predictions remain meaningful and actionable, aligning the model’s behaviour with the
practical demands of observability workflows.

Table 7: Performance metrics for GC forecasting within a 30-second horizon.
Model Accuracy Precision Recall F1-score
Random Forest 0.87 0.84 0.86 0.85
XGBoost 0.87 0.84 0.85 0.84
LightGBM 0.87 0.83 0.86 0.84
MLP Classifier 0.85 0.82 0.84 0.83

To support a focused and operationally meaningful interpretation of the predictive
experiment, two metrics were selected for consolidated visualization: Precision and
F1-score. Precision is the primary metric in this context because GC pauses are rela-
tively infrequent events, and false positives introduce operational noise by generating
unnecessary alerts and misleading indications of memory pressure. High precision

43

therefore reflects the model’s ability to issue positive predictions only when they are
likely to correspond to actual GC activity, which is crucial for preserving the reliability
of triage workflows.

Table 8: Performance metrics for GC forecasting within a 30-minutes horizon.
Model Accuracy Precision Recall F1-score
Random Forest 0.76 0.92 0.80 0.86
XGBoost 0.66 0.92 0.68 0.78
LightGBM 0.62 0.93 0.64 0.75
MLP Classifier 0.82 0.92 0.88 0.90

Table 9: Performance metrics for GC forecasting within a 60-minute horizon.
Model Accuracy Precision Recall F1-score
Random Forest 0.88 0.94 0.93 0.93
XGBoost 0.78 0.95 0.81 0.87
LightGBM 0.76 0.94 0.79 0.86
MLP Classifier 0.89 0.94 0.95 0.94

F1-score is included as a complementary metric because it reflects the balance
between Precision and Recall, capturing whether the model’s behaviour remains stable
when both correctness and coverage are considered. While Precision alone indicates
the usefulness of alerts, F1-score reveals whether performance gains come at the cost
of systematically missing true events. Plotting both metrics together in Figure 18 thus
provides a concise representation of each model’s operational reliability and overall
robustness across the three forecasting horizons.

The patterns observed in Figure 18 highlight how models behave under different
temporal horizons. In short windows (30 seconds), Precision and F1-score remain
relatively close across all algorithms, reflecting the dominance of immediate memory-
pressure effects. At the 30-minute horizon, Precision remains high while F1-score de-
creases for some models, indicating that positive predictions become more reliable but
coverage decreases. In the 60-minute horizon, both metrics converge to higher val-
ues for Random Forest and the MLP, evidencing the influence of long-term workload
periodicity. Together, these results reinforce that classical ML provides a stable com-
plementary signal to the semantic-enrichment stage, especially when evaluated under
metrics aligned to operational relevance.

44

Figure 18: Consolidated comparison of Precision and F1-score across all models and
forecasting horizons.

The ROC analysis provides complementary insight into the discriminative capacity
of classical models across different forecasting horizons. While short (30 s) and long
(60 min) horizons exhibit limited separability, reflected by AUC values close to 0.65, the
intermediate 30-minute horizon achieves consistently high AUC values (≈0.90) across
all evaluated models. This pattern indicates that GC predictability emerges primarily
at temporal scales where memory pressure accumulates and workload periodicity be-
comes observable. Nevertheless, ROC curves are not treated as the primary decision
criterion in this study, since operational relevance in observability contexts depends
more strongly on Precision and F1-score than on global discrimination alone.

Figures 19, 20, and 21 illustrate the ROC behaviour across the three forecasting
horizons, highlighting the limited discriminative capacity at very short and long horizons
and the strong separability observed at the intermediate temporal scale.

The selection of the final predictive configuration follows a hierarchical evaluation
strategy grounded in operational relevance. Precision was defined as the primary met-
ric, as false positives in GC prediction introduce unnecessary alerts and degrade trust
in monitoring outputs. F1-score was adopted as a complementary metric to ensure
that high Precision was not achieved through overly conservative behaviour that would
systematically miss true GC events.

45

Figure 19: ROC curves for GC prediction within a 30-second horizon.

Figure 20: ROC curves for GC prediction within a 30-minute horizon.

46

Figure 21: ROC curves for GC prediction within a 60-minute horizon.

Under these criteria, the 30-minute forecasting horizon represents the most suitable
temporal scale, as it is the shortest horizon that simultaneously delivers high Precision
across all models while providing sufficient lead time for operational response. Within
this horizon, the MLP classifier achieved the highest F1-score (0.90) while maintaining
consistently high Precision (0.92), indicating a superior balance between alert reliability
and event coverage compared to tree-based models, which exhibited reduced Recall
and lower F1-scores.

ROC–AUC was used as a final validation criterion to confirm that the selected con-
figuration reflects stable discriminative capacity rather than a threshold-dependent arte-
fact. The high AUC values observed at the 30-minute horizon (≈0.90) confirm that GC
predictability is structurally present at this temporal scale. Within this context, the MLP
combines strong global discrimination with the most balanced Precision–Recall trade-
off. Accordingly, the MLP model at the 30-minute forecasting horizon is adopted as the
representative predictive scenario for concluding the experiment.

5.6 OPERATIONAL DASHBOARDS
This subsection presents operational dashboards derived from production logs to

provide contextual support for the experimental analysis. The dashboards, implemented
in Grafana over data indexed in Elasticsearch, expose time-series behaviour, access

47

patterns, garbage-collection activity, and application-level errors. They are used to
characterise the execution environment and the monitored system, rather than to eval-
uate model outputs.

5.6.1 Access and Usage Dashboard Results

Source: Own elaboration.

Figure 22: Access and usage dashboard visualized in Grafana.

The dashboard presents long-term usage patterns, hourly request frequencies, and
per-server activity distribution, highlighting natural fluctuations and periods of intensified
usage.

5.6.2 Application Errors Dashboard Results

Source: Own elaboration.

Figure 23: Application error and warning dashboard.

The dashboard summarizes total ERROR and WARN events, affected hosts, tem-
poral evolution of errors, and severity distribution.

5.6.3 JVM Stop-the-World (STW) Dashboard
The panels present STW percentiles, event counts, maximum duration, temporal

variation, and per-server differences.

48

Source: Own elaboration.

Figure 24: Dashboard summarizing JVM STW pause behaviour.

5.7 DISCUSSION AND SUMMARY OF FINDINGS
This study examined whether semantic enrichment based on Small Language Mod-

els can enhance the interpretability of operational logs collected from a real large-scale
production environment under realistic on-premises constraints. The results presented
in this chapter indicate that contextual and causal insight can be extracted from raw
logs through a log-centric observability architecture, centered on structured ingestion
and local semantic enrichment, which constitutes the central contribution of this work
and the primary focus of the experimental evaluation.

The evaluated SLMs consistently generated structured explanations that highlighted
dominant failure modes, affected subsystems, and plausible propagation patterns. This
behavior enables a direct transition from raw log events to interpretative diagnostic
understanding, reducing the need for exclusively manual correlation during incident
and problem analysis. Under CPU-only execution, Phi-3 Mini exhibited stable latency
and predictable execution behavior across hardware profiles, whereas Mistral-7B pro-
duced more elaborated explanations at a computational cost that proved less com-
patible with constrained environments. These observations reinforce model size and
CPU characteristics as decisive factors shaping the feasibility of semantic enrichment in
on-premises contexts. Resource-monitoring show that inference workloads were pre-
dominantly CPU-bound across all evaluated scenarios. CPU saturation consistently
preceded any critical memory pressure, while memory usage exhibited transient fluctu-
ations without sustained exhaustion patterns. This behavior supports the architectural
emphasis on lightweight, quantized models and CPU-aware execution strategies for
shared on-premises infrastructure.

A complementary predictive experiment was conducted as an exploratory analyt-
ical step. Using numerical telemetry derived from raw logs, a traditional supervised
learning approach was applied to assess whether temporal patterns associated with
JVM garbage-collection activity could be identified at different forecasting horizons.

49

By operating on structured numerical signals rather than textual log representations,
this experiment avoids the brittleness of classical NLP pipelines and remains robust
to minor log-format variations. The results indicate that traditional machine learning
models can provide auxiliary numerical signals in specific scenarios, such as sustained
garbage-collection pressure, without competing with semantic enrichment as the pri-
mary diagnostic mechanism or requiring heavy pre-processing pipelines based on tex-
tual vectorization and retraining.

Taken together, the results presented in this chapter characterize the behaviour
of the evaluated log-centric observability architecture under realistic production condi-
tions, establishing an empirical basis for the analysis and conclusions developed in the
subsequent chapter.

50

6

6
CONCLUSION

Operational logs produced by mission-critical distributed systems are fragmented,
noisy, and difficult to interpret, particularly in environments where failures arise from
complex interactions rather than isolated faults. In such scenarios, metric-centric ob-
servability approaches offer limited explanatory power, increasing the cognitive effort
required during diagnosis and incident investigation.

This work addressed this problem by designing, implementing, and evaluating a
log-centric observability architecture grounded in a real production environment. The
proposed solution integrates a structured log-ingestion pipeline with a local semantic-
enrichment layer based on compact Small Language Models (SLMs), explicitly de-
signed to operate under on-premises and CPU-only constraints. The study was con-
ducted using one year of anonymized production log data collected from a public-sector
system operating under sustained workload conditions.

The experimental results demonstrate that the objectives of this study were achieved.
Semantic enrichment based on compact transformer models can be applied directly to
raw operational logs with predictable latency, stable execution behavior, and consistent
explanatory outputs under CPU-only execution. These findings confirm the practical
viability of applying local semantic enrichment based on compact transformer models
directly to raw operational logs within log-centric observability pipelines under CPU-only
constraints. A numerical forecasting experiment further indicated that quantitative sig-
nals derived from logs may provide additional contextual support in specific operational
scenarios.

This study is intentionally limited to log-based semantic enrichment and interpre-
tative analysis and does not address automated remediation, autonomous decision-
making, or the integration of metrics and traces into a unified reasoning framework.
Future work may extend the proposed architecture through parameter-efficient fine-
tuning, retrieval-augmented generation, and the incorporation of additional observabil-
ity signals to expand semantic coverage and diagnostic depth.

Overall, the findings indicate that a decoupled, log-centric architecture centered on
local semantic enrichment provides a practical and deployable foundation for interpre-
tative observability, even in complex production environments operating under con-
strained execution conditions.

52

REFERENCES

References

[1] IBM, “Observability,” IBM Think Portal, 2024, acesso em: 17 jun. 2025. [Online].
Available: https://www.ibm.com/think/topics/observability

[2] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy, Site Reliability Engineering. Se-
bastopol, CA: O’Reilly Media, Apr. 2016.

[3] S. Niedermaier, F. Koetter, A. Freymann, and S. Wagner, On Observability and
Monitoring of Distributed Systems – An Industry Interview Study. Springer
International Publishing, 2019, p. 36–52. [Online]. Available: http://dx.doi.org/10.
1007/978-3-030-33702-5_3

[4] Elastic, “Elasticsearch reference,” Elastic Documentation, 2025, acesso em:
20 jun. 2025. [Online]. Available: https://www.elastic.co/guide/en/elasticsearch/
reference/current/index.html

[5] ——, “Elastic observability,” Elastic Documentation, 2025, acesso em: 20 jun.
2025. [Online]. Available: https://www.elastic.co/observability

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st Interna-
tional Conference onNeural Information Processing Systems. Curran Associates,
Inc., 2017, pp. 6000–6010.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of NAACL-
HLT, 2019.

[8] T. B. Brown, B. Mann, N. Ryder et al., “Language models are few-
shot learners,” arXiv preprint arXiv:2005.14165, 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[9] R. Bommasani et al., “On the opportunities and risks of foundation models,” Com-
munications of the ACM, vol. 65, no. 8, pp. 58–67, 2022.

[10] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler,
M. Lewis, W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela, “Retrieval-augmented
generation for knowledge-intensive nlp tasks,” arXiv preprint arXiv:2005.11401, 4
2021. [Online]. Available: https://arxiv.org/abs/2005.11401

[11] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

54

[12] IBM, “Observability vs. monitoring: What’s the difference?” IBM Think Portal,
2024, acesso em: 17 jun. 2025. [Online]. Available: https://www.ibm.com/think/
topics/observability-vs-monitoring

[13] Cloud Native Computing Foundation (CNCF), “CNCF Platforms Whitepaper,”
Cloud Native Computing Foundation, Tech. Rep., 2023. [Online]. Available:
https://tag-app-delivery.cncf.io/whitepapers/platforms/

[14] Elastic, “Filebeat documentation,” Elastic Documentation, 2025, acesso em:
20 jun. 2025. [Online]. Available: https://www.elastic.co/guide/en/beats/filebeat/
current/index.html

[15] ——, “Logstash documentation,” Elastic Documentation, 2025, acesso em: 20
jun. 2025. [Online]. Available: https://www.elastic.co/guide/en/logstash/current/
index.html

[16] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence : a modern approach.
Prentice Hall, 2010.

[17] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language
models are unsupervised multitask learners,” OpenAI Technical Report, 2019.

[18] OpenAI, “Gpt-4 technical report,” OpenAI, Tech. Rep., 2023, arXiv:2303.08774.
[Online]. Available: https://arxiv.org/abs/2303.08774

[19] IBM, “How generative ai is changing observability,” IBM Think Insights, 2024,
acesso em: 20 jun. 2025. [Online]. Available: https://www.ibm.com/think/insights/
observability-gen-ai

[20] J. Zhou, Y. Gao, C. Tan, Y. Yang, and J. Xiang, “Poster: Glog: Self-evolving log
anomaly type prediction via instruction-tuned llm and clustering,” in Proceedings of
the 2025 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’25). New York, NY, USA: Association for Computing Machinery, 10 2025,
pp. 4791–4793.

[21] A. N. Videsjorden, H. Song, A. Goknil, D. Roman, and A. Soylu, “Lumen:
Enhancing iot system observability with multi-agent large language models and
knowledge graphs,” ACM Transactions on Internet of Things, 10 2025. [Online].
Available: https://dl.acm.org/doi/10.1145/3772077

[22] V. Kataria, “Intelligent site reliability engineering: A multi-agent llm framework for
automated incident analysis and root cause determination,” International Journal
of Intelligent Engineering and Systems, vol. 18, pp. 450–466, 12 2025.

55

[23] Dynatrace, “Unified observability and security platform,” DynatraceWebsite, 2025,
acesso em: 07 dez. 2025. [Online]. Available: https://www.dynatrace.com/pt-br/

[24] Datadog, “Cloud scale monitoring and security,” Datadog Website, 2025, acesso
em: 07 dez. 2025. [Online]. Available: https://www.datadoghq.com/

[25] D. Kreuzer, A. F. Akyürek, Y. Kim, and J. Andreas, “Small language models
can evaluate too: On the feasibility of compact models as reliable judges,” arXiv
preprint arXiv:2402.01719, 2024.

[26] K. Zheng, W.-L. Chiang, J. Zhuang, M. Wu, C. Lin, H. Zhang, C. Finn, and
T. Hashimoto, “Judging llm-as-a-judge: Evaluating large language models as
general-purpose evaluators,” arXiv preprint arXiv:2306.05685, 2023.

[27] S. W. Chan, S. Santurkar, D. Ganguli, D. Reich, S. Bubeck, J. Gehrke, and
P. Liang, “Assessing the reliability of large language models as evaluation judges,”
arXiv preprint arXiv:2310.07298, 2023.

[28] Splunk, “Unified security and observability platform,” Splunk Website, 2025,
acesso em: 07 dez. 2025. [Online]. Available: https://www.splunk.com/

[29] K. Kent and M. Souppaya, “Guide to computer security log management,”
National Institute of Standards and Technology (NIST), Tech. Rep. SP
800-92, 2014. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-92.pdf

[30] Splunk Inc., “What is siem?” 2024. [Online]. Available: https://www.splunk.com/
en_us/data-insider/what-is-siem.html

[31] ——, “Search processing language (spl) overview,” 2024. [Online]. Available:
https://docs.splunk.com/Documentation/Splunk/latest/Search/AboutSPL

[32] M. Armbrust et al., “The big data systems landscape,” Communications of the
ACM, vol. 58, no. 12, pp. 38–47, 2015.

[33] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and
W. Chen, “Lora: Low-rank adaptation of large language models,” International
Conference on Learning Representations (ICLR), 2022. [Online]. Available:
https://openreview.net/forum?id=nZeVKeeFYf9

[34] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient fine-
tuning of quantized llms,” arXiv preprint arXiv:2305.14314, 2023.

[35] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27,
no. 8, pp. 861–874, 2006.

56

[36] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
Cambridge University Press, 2008.

[37] G. Starke and P. Hruschka, Software Architecture Documentation in Practice.
Leanpub, 2021. [Online]. Available: https://docs.arc42.org/home/

[38] J. Hoffmann, S. Borgeaud, A. Mensch et al., “Training compute-optimal large lan-
guage models,” Nature Machine Intelligence, vol. 4, pp. 1024–1035, 2022.

[39] P. Lewis, E. Perez, A. Piktus, V. Karpukhin, N. Goyal, and ..., “Retrieval-augmented
generation for knowledge-intensive nlp tasks,” in NeurIPS, 2020.

57

Ensino que
te conecta

