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ABSTRACT

This work investigates the challenges of personalized fashion recommendation in
digital environments, with emphasis on semantic consistency, interpretability, and struc-
tured representation of user style. Traditional approaches based on monolithic lan-
guage model architectures often suffer from context dilution and limited transparency
when handling multimodal inputs and complex interaction histories. As an alternative,
this study proposes a hierarchical multi-agent architecture in which specialized agents
independently perform visual analysis, user profile modeling, and recommendation syn-
thesis. Agent orchestration is inspired by principles of the Model Context Protocol
(MCP), aiming to provide explicit control over context flow and reasoning processes.
The experimental evaluation was conducted through a direct comparison with a mono-
lithic approach using the FashionRec dataset. Results were analyzed using semantic
similarity metrics based on Sentence-BERT and a qualitative assessment grounded
in the LLM-as-a-Judge paradigm. The experiments indicate that the hierarchical ar-
chitecture achieves higher personalization consistency, greater semantic stability, and
improved explanatory clarity in recommendations. Although reasoning decomposition
incurs higher computational cost, the results demonstrate that functional separation
among agents mitigates context loss and supports style-sensitive recommendations,
constituting a promising approach for the development of more interpretable, coherent,
and adaptive fashion recommendation systems.

Keywords: Recommendation systems. Fashion. Multi-agent architecture.
Multimodality. Interpretability..



RESUMO

Este trabalho investiga os desafios da recomendacgao personalizada de moda em
ambientes digitais, com foco na consisténcia semantica, interpretabilidade e represen-
tacao estruturada do estilo do usuario. Abordagens tradicionais baseadas em arquite-
turas monoliticas de modelos de linguagem tendem a sofrer com diluicdo de contexto
e baixa transparéncia ao processar informagdes multimodais e histéricos complexos
de interagcdo. Como alternativa, é proposta uma arquitetura hierarquica multiagente,
na qual agentes especializados realizam, de forma desacoplada, a analise visual, a
modelagem do perfil do usuario e a sintese da recomendagado. A orquestracio entre
os agentes é inspirada em principios do Model Context Protocol (MCP), visando maior
controle sobre o fluxo de contexto e o processo de raciocinio. A avaliagdo experimen-
tal foi conduzida por meio de uma comparagao direta com uma abordagem monolitica,
utilizando o conjunto de dados FashionRec. Os resultados foram analisados com base
em métricas de similaridade semantica (Sentence-BERT) e em uma avaliagao qualita-
tiva baseada no paradigma LLM-as-a-Judge. Os experimentos indicam que a arquite-
tura hierarquica apresenta maior consisténcia de personalizagao, estabilidade seman-
tica e clareza explicativa nas recomendagdes. Embora a decomposi¢cédo do raciocinio
implique maior custo computacional, os resultados demonstram que a separagao fun-
cional entre agentes reduz efeitos de perda de contexto e favorece recomendacdes
mais sensiveis ao estilo em uma abordagem promissora para obtengao de sistemas
de recomendacido de moda mais interpretaveis, coerentes e adaptativos.

Palavras-chave: Sistemas de recomendagao. Moda. Arquitetura multiagente.
Multimodalidade. Interpretabilidade..
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INTRODUCTION

1.1 BACKGROUND AND CONTEXT

Fashion e-commerce is one of the most relevant segments of global digital retail.
The sector generated more than US$820 billion in 2023, with projections that exceed
the US$1 trillion mark by 2027 [1]. In the Brazilian context, the fashion category re-
mains among the leaders in national e-commerce, driven by the growing adoption of
consumption via mobile devices, the integration between digital platforms, social net-
works and marketplaces, as well as the search for practicality in shopping experiences.
The Brazilian fashion e-commerce market reached a volume of US$10.38 billion in
2024, with expected annual growth of between 10% and 15% in the coming years [2].
This scenario of accelerated expansion highlights the need for innovative technological
solutions that provide not only transactional efficiency, but also personalized experi-
ences that meet consumers’ stylistic preferences, in the face of an increasingly broad,
dynamic and competitive digital catalog.

Despite the wide range of products on offer, this abundance can generate coun-
terproductive effects, such as the so-called paradox of choice, in which an excess of
alternatives leads to indecision, frustration and reduced consumer satisfaction [3]. In
the context of digital fashion, this translates into the difficulty of finding pieces that reflect
the user’s personal style among thousands of available options. About this challenge,
solutions based on artificial intelligence (Al) have established themselves as essen-
tial tools for personalizing the online shopping experience. Intelligent recommendation
systems, capable of interpreting aesthetic preferences and suggesting relevant items,
have become a competitive differentiator. However, many of these systems still operate
based on historical purchase data, generic filters or rigid categories, without capturing
subjective nuances such as style, occasion or cultural context.

This work is situated within this context and proposes the use of multimodal agents
for clothing recommendation based on personal style, addressing the demands of con-
temporary fashion e-commerce for advanced, responsive, and meaningful personaliza-
tion. Consequently, the need for more sophisticated models capable of jointly under-
standing language and visual information becomes evident. Despite the widespread
adoption of recommender systems in fashion e-commerce, most existing solutions re-



main primarily optimized for transactional efficiency rather than for capturing the sub-
jective and contextual nature of personal style. While current systems can effectively
suggest items based on popularity, similarity, or past interactions, they often fail to
model style as a coherent, interpretable, and evolving concept. As a result, recom-
mendations may appear relevant at a surface level yet lack deeper alignment with the
user’s aesthetic identity, cultural background, or situational preferences. This gap be-
tween operational recommendation performance and meaningful stylistic understand-
ing constitutes a central challenge for contemporary fashion e-commerce platforms and
motivates the problem addressed in this research.

1.2 PROBLEM STATEMENT AND RESEARCH HYPOTHESES

In the context of fashion e-commerce, recommender systems have become essen-
tial tools for managing the overwhelming variety of options and delivering personalized
shopping experiences. However, despite recent advances in multimodal agents pow-
ered by language and vision models, such as FashionM3 [4], a significant limitation
remains: the challenge of capturing and representing the concept of style in an explicit,
structured, and adaptive manner.

Current approaches often rely on implicit inferences derived from user interaction
histories and visual or semantic similarity metrics. While effective for basic person-
alization, these methods fall short of modeling fashion style as an abstract, culturally
informed, and ever-evolving construct. The intelligence of these systems is typically
embedded within a single, monolithic model, making it difficult to isolate, update, or
explain its understanding of a specific aesthetic.

Moreover, the stylistic knowledge in such systems tends to be static and prone to
‘context dilution’ when processing complex multimodal queries. Monolithic models of-
ten struggle to balance immediate visual inputs with long-term user history, frequently
defaulting to generic recommendations that fail to capture the unique, long-tail stylistic
preferences of individual users. This limitation hinders the system’s ability to adapt to
the specific, evolving tastes of each user, resulting in a ’one-size-fits-all’ experience.

This research departs from monolithic recommendation models and explores a frame-
work based on a system of specialized style agents. Each agent is responsible for
representing and reasoning over specific fashion concepts, such as style attributes,
visual patterns, or contextual preferences. From an implementation perspective, the
proposed architecture is informed by general principles of modular orchestration and
controlled context management commonly discussed in recent agent-based Al. In par-
ticular, it draws conceptual inspiration from ideas associated with the Model Context
Protocol (MCP), which emphasizes structured interaction boundaries between models
and external resources [5]. Its high-level principles, such as role separation, explicit
context ownership and mediated coordination are used as design guidelines to support



modularity and reduce uncontrolled context accumulation.

Within this architecture, individual style agents maintain localized operational con-
texts and can be independently refined or extended using multimodal data. This design
choice aims to enhance adaptability and interpretability, as recommendations can be
traced back to specific agents and fashion concepts, without relying on opaque internal
representations of a single monolithic model.

This research is justified by its potential to generate significant contributions across
multiple domains. From a theoretical perspective, it investigates an alternative paradigm
for modeling subjective and evolving concepts, such as fashion style, by exploring dis-
tributed reasoning through specialized agents rather than relying on monolithic repre-
sentations. Methodologically, the work examines how general principles of modular
orchestration and explicit context management—commonly discussed in recent agent-
based Al systems can be applied to multimodal recommendation tasks.

From a practical standpoint, the proposed approach has the potential to enhance
personalization in fashion e-commerce by providing recommendations that are more
aligned with users’ stylistic identities and easier to explain. Technically, the design con-
tributes to system robustness and transparency, mitigating common issues of context
dilution and unpredictability in large generative models.

The proposed architecture follows general orchestration principles inspired by re-
cent agent-based Al frameworks, including task decomposition, role specialization, and
coordinator-mediated interaction. Rather than implementing the full Model Context Pro-
tocol (MCP), these principles are adopted at an abstract level to investigate whether
modular, agent-oriented designs yield measurable improvements in recommendation
quality when compared to monolithic baselines.

Based on the identified limitations of monolithic architectures, this study evaluates
the following research hypotheses:

* H1 (Personalization): A hierarchical multi-agent architecture improves recom-
mendation personalization compared to monolithic baselines by explicitly model-
ing user preferences and distributing reasoning across specialized agents.

* H2 (Semantic Robustness): Decomposing the recommendation workflow into
specialized agents reduces semantic inconsistencies and context dilution com-
monly observed in monolithic multimodal models.

* H3 (Efficiency Trade-off): Under increasing multimodal contextual complexity, a
hierarchical multi-agent architecture achieves higher inference stability and rec-
ommendation quality than a monolithic architecture by reallocating computational
effort toward structured reasoning.



1.3 OBJECTIVES AND STRUCTURE OF THE WORK

The main goal of this research is to design and experimentally evaluate a style-
aware clothing recommendation framework based on a hierarchical multi-agent archi-
tecture. The specific goals of this work are as follows:

* Investigate the limitations of monolithic multimodal recommender systems in cap-
turing the dynamic, contextual, and subjective nature of fashion style.

* Design and analyze a hierarchical multi-agent architecture in which specialized
agents explicitly encapsulate distinct reasoning capabilities, including visual anal-
ysis, style profiling, and final item recommendation.

* Implement and validate a functional prototype that operationalizes MCP-inspired
orchestration principles using the OpenAl Agents SDK, enabling controlled coor-
dination and communication among agents without relying on the full MCP proto-
col.

» Evaluate the proposed framework in terms of personalization quality, interpretabil-
ity, semantic consistency, and robustness, comparing its behavior against a mono-
lithic baseline under the same generative backbone.

This chapter presents the contextualization of the topic, the definition of the research
problem, the justification, the objectives, and the guiding hypotheses. The remainder
of this work is organized as follows:

* Chapter 2 — Literature Review: Reviews the relevant literature on fashion rec-
ommender systems, multimodal learning, multi-agent architectures, and repre-
sentative state-of-the-art approaches in fashion recommendation.

* Chapter 3 — Methodology: Details the experimental design, the proposed hier-
archical multi-agent architecture, the implementation of agents inspired by MCP
principles, and the evaluation metrics.

* Chapter 4 — Results and Discussion: Presents the comparative analysis be-
tween the proposed multi-agent system and a monolithic baseline, validating the
hypotheses through quantitative and qualitative evidence.

* Chapter 5—-Conclusion: Summarizes the research findings, highlights the achieve-
ment of objectives, discusses limitations related to computational cost and sample
size, and proposes directions for future work.



Ensino que te conecta idp




" L ip

LITERATURE REVIEW

21 THEORETICAL FOUNDATIONS

This section presents the theoretical foundations that support the proposed archi-
tecture, outlining the principles of recommendation systems, multimodal learning, gen-
erative models, and autonomous agents as applied to personalized fashion recommen-
dation.

21.1 Recommendation Systems

Recommendation systems are based on algorithms capable of suggesting items
according to user preferences. Traditional approaches include collaborative filtering,
content-based filtering, and hybrid systems [6]. These systems function as an extension
of the social recommendation process, aggregating individual opinions and delivering
them in a personalized manner.

Collaborative filtering, one of the most widely used methods, can be based on user
similarity (user-based) or item similarity (item-based), employing metrics such as cosine
similarity, correlation, and adjusted cosine. Predictions can be made through weighted
summation or regression. Although originally designed in a centralized manner, such
systems also show potential for exploration under a multi-agent perspective, in which
autonomous agents could dynamically adapt to user preferences in distributed environ-
ments [7].

Over the past decade, advances in Atrtificial Intelligence (Al), Machine Learning
(ML), and Deep Learning (DL) have significantly expanded the capabilities of collab-
orative filtering [8]. These approaches enable models to capture complex user—item
interaction patterns, learn high-dimensional latent representations, and integrate con-
textual and temporal signals [9].

A particularly impactful shift is the rise of Generative Al, which introduced models
capable not only of classifying or retrieving information but also of generating coherent
and context-aware content—ranging from product descriptions to stylistic suggestions.
Large Language Models (LLMs), such as GPT and LLaMA, exemplify this new gen-
eration of systems that can understand and produce fluent natural language. When
coupled with Retrieval-Augmented Generation (RAG) mechanisms [10], these mod-



els achieve greater factual accuracy by incorporating external knowledge into their re-
sponses.

The integration of Large Language Models (LLMs) with multimodal capabilities—
such as vision-language models like CLIP [11] and BLIP [12]—further expands their
potential in domains like fashion, where both textual and visual understanding are es-
sential for personalized recommendations. These models enable the alignment of im-
age and text representations in a shared embedding space, facilitating contextual in-
terpretations of style, color, and composition.

Building upon these advances, this work proposes a multi-agent architecture that
leverages generative reasoning and multimodal embeddings to enhance the relevance,
diversity, and transparency of clothing recommendations.

The evolution of recommendation systems reflects a progressive increase in rep-
resentational complexity, moving from explicit preference modeling toward learned se-
mantic and stylistic representations. Figure 1 summarizes this conceptual progression.

[Collaborative / Content-Based FiItering}

|

{Neural Representation Learning}

|

[ Multimodal Fusion }

|

[ Style-Aware Reasoning }

Figure 1: Conceptual evolution of recommendation systems from classical filtering ap-
proaches to style-aware multimodal reasoning.

This progression highlights how contemporary fashion recommendation systems
increasingly rely on latent representations and multimodal signals to capture subjective
notions such as style and compatibility.

2.1.2 Neural Architectures for Representation Learning

Modern recommendation systems increasingly rely on the ability to learn abstract,
high-dimensional representations of user preferences and item characteristics. This
capability, known as representation learning, is essential for modeling latent features
that go beyond explicit ratings or categories—such as aesthetic style, visual coherence,
and contextual fit. Among the most effective tools for this task are Artificial Neural
Networks (ANNs), whose evolution has profoundly influenced the design of intelligent,
data-driven recommendation frameworks [13].



Inspired by biological neurons, the Perceptron was originally conceived to investi-
gate how the brain encodes information. In this connectionist model, knowledge is not
stored as “copies” of stimuli, but rather emerges from the connections formed between
computational units. Although simple, the Perceptron modeling introduced the use
of neural networks in recognition and classification tasks [14]. The Perceptron’s con-
vergence procedure required manually predefined inputs (“feature analyzers”), which
made it impractical for learning complex internal representations. As a result, linearly
non-separable problems remained beyond its reach [14].

The publication by Rumelhart, Hinton, and Williams introduced the backpropaga-
tion algorithm [15], enabling the training of networks with hidden layers by iteratively
adjusting weights to minimize output error. With this advancement, internal units be-
gan to extract abstract features, enabling solutions to more sophisticated tasks—such
as symmetry detection. This evolution laid the foundation for deep neural architectures
that now support multimodal recommendation systems, including those in the fashion
domain.

With advances in computational resources and the growth of available data, more
sophisticated architectures emerged, such as Transformers, introduced by Vaswani et
al. [16]. These models replaced recurrence mechanisms with self-attention, allowing
for parallel sequence processing and the modeling of long-range dependencies with
high efficiency. Initially designed for natural language tasks, Transformers quickly ex-
panded into multimodal applications, exemplified by models like CLIP, Florence, and
BLIP, which project text and images into a unified embedding space. These models
are particularly relevant in fashion recommendation scenarios, as they can accurately
capture both visual context and stylistic semantics [11].

Building on this foundation, several neural architectures have been developed to
address specific tasks such as image analysis, sequential modeling, and multimodal
integration. The most prominent types include:

* CNNSs (Convolutional Neural Networks): they have become essential for visual
representation in recommendation systems, particularly after the breakthrough
of AlexNet by Krizhevsky et al. [17]. This deep architecture, composed of five
convolutional layers and three fully connected layers, achieved unprecedented
performance in the ImageNet ILSVRC-2012 competition. Techniques such as
ReLU activation, local response normalization, dropout, and data augmentation
contributed to faster training and reduced overfitting. The network was trained on
multiple GPUs with millions of parameters, solidifying the role of CNNs in complex
computer vision tasks.

* RNNs (Recurrent Neural Networks) and Long Short-Term Memory networks
(LSTMs): These architectures specialize in sequential data processing and are



used to model user behavior over time, such as click histories, views, or pur-
chases. LSTMs, introduced by Hochreiter and Schmidhuber [18], overcome the
limitations of basic RNNs by preserving long-term dependencies and are widely
applied in sequential prediction tasks. In recommendation contexts, models like
GRU4Rec use such architectures to predict users’ next interactions with high ac-
curacy [19].

» Transformers: As used in models like CLIP, Florence, and BLIP, Transformers
enable multimodal recommendation systems by integrating text and image rep-
resentations. Their ability to capture visual and stylistic semantics makes them
particularly suitable for context-aware fashion recommendation [11].

* GANSs (Generative Adversarial Networks): Proposed by Goodfellow et al. [20],
GANSs consist of two networks trained competitively: a generator that creates syn-
thetic samples, and a discriminator that evaluates whether those samples are real
or generated. This minimax game leads the generator to produce increasingly re-
alistic outputs, and GANs have become widely used in image synthesis tasks. In
fashion, GANs have been employed to generate visually compatible outfits, such
as in the OutfitGAN model. More recently, FashionDPO demonstrated how Di-
rect Preference Optimization can fine-tune generative models based on explicit
human preferences, improving both coherence and personalization in recommen-
dations [21,22].

* KANs (Kolmogorov—-Arnold Networks): Proposed by Liu et al. [23], KANs re-
place fixed activation functions in nodes (as in traditional MLPs) with learnable
univariate functions on edges, typically parameterized as splines. Inspired by the
Kolmogorov—Arnold representation theorem, KANs combine local precision with
model interpretability, achieving high representational power while scaling better
than MLPs in several tasks. Although still experimental and not yet widely adopted
in production-grade recommender systems, KANs are considered a promising
alternative to standard multilayer perceptrons, particularly in scenarios requiring
compact and interpretable models.

2.1.3 Multimodal Learning and Style-Sensitive Recommendation

Multimodal learning models aim to create unified and enriched representations from
multiple data sources, such as images, text, and audio. The central premise is that com-
bining different modalities enables a deeper and more robust understanding than what
would be possible using a single source of information. This section traces the evolu-
tion of such models—from early foundational works to the state-of-the-art architectures
in vision and language—focusing on their applicability to complex tasks such as fashion

recommendation.



A seminal contribution in this field is the work by Ngiam et al. [24], which explored
how deep learning architectures could be extended to discover correlated representa-
tions across modalities. Inspired by the human ability to integrate sensory stimuli—as in
audiovisual speech recognition, where lip movements complement sound—the authors
aimed to overcome the limitations of manual feature engineering.

The initial approaches investigated by Ngiam et al. (2011) employed Restricted
Boltzmann Machines (RBMs), evolving from separately trained RBMs for each modality
to bimodal Deep Belief Networks (DBNSs) trained over concatenated data. However,
these architectures showed limitations in modeling complex, nonlinear correlations.

To address these shortcomings, the authors proposed the use of Deep Autoen-
coders, introducing two main variations:

* Video-Only Deep Autoencoder: Designed for cross-modal learning, this model
is trained to reconstruct both audio and video features using only the video as
input. This forces the network to learn a visual representation enriched by inter-
modal correlations.

+ Bimodal Deep Autoencoder: A more robust architecture trained with corrupted
inputs (where one modality may be missing), pushing the model to learn to recon-
struct both modalities from partial data. This strategy enables the learning of not
only modality-specific features but also a shared representation that is invariant
to input and capable of inferring one modality from another.

As demonstrated by Ngiam et al. [24], these models improved performance in classi-
fication tasks and even replicated perceptual phenomena such as the McGurk effect—
thus validating the creation of a truly multimodal internal representation. Building upon
the foundations of multimodal learning, the field has expanded into several applica-
tion domains—one of the most prominent being Multimodal Recommendation Systems
(MRS). A comprehensive survey by Deldjoo et al. [25] maps this landscape, where
visual, textual, and auditory features play a critical role in improving recommendation
quality and mitigating classical challenges such as data sparsity. To organize this com-
plex domain, Deldjoo et al. categorize the wide range of MRS models based on four
core technical challenges they aim to address:

* Modality Encoder: The initial challenge of extracting meaningful features from
raw data. Models such as Vision Transformers (ViT) for images and BERT for
text are standard at this stage.

* Feature Interaction: Perhaps the most complex challenge, focused on effec-
tively merging features from different modalities. Strategies include bridging (us-
ing graphs to transfer information), fusion (employing attention mechanisms to
combine representations), and filtering (removing noise).



* Feature Enhancement: After fusion, the goal is to refine the quality of the joint
representation. Two notable techniques are Disentangled Representation Learn-
ing (DRL), which isolates latent factors, and Contrastive Learning (CL), which
semantically aligns the multiple modal views of a given item.

* Model Optimization: A practical challenge related to the high computational
complexity of MRS, with strategies ranging from end-to-end training to two-stage
learning pipelines.

This taxonomy not only systematizes existing approaches but also highlights the
need for future solutions that are more unified, interpretable, and computationally effi-
cient [25].

2.1.4 Language-Supervised Multimodal Learning

The technique of contrastive learning has been elevated to a new level and serves
as the foundation of one of the most influential multimodal models to date: CLIP (Con-
trastive Language—Image Pre-training), proposed by Radford et al. [11]. Rather than
relying on curated and labeled datasets with fixed categories, CLIP learns robust visual
representations directly from natural language supervision.

This methodology is based on massive-scale data (a dataset of 400 million image-
text pairs collected from the internet) and a contrastive pre-training objective. An image
encoder and a text encoder are trained jointly to align their embeddings, maximizing the
similarity between correct (image, text) pairs and minimizing it for incorrect pairs.

CLIP’s most impactful innovation lies in its zero-shot transfer capability. Once trained,
the model can perform classification tasks on entirely new datasets without any addi-
tional training—simply by comparing the embedding of an image to the embeddings of
textual prompts that describe the candidate classes (e.g., “a photo of a dog”).

CLIP not only established a new state of the art for transferable visual models but
also sparked an important debate about its limitations. Radford et al. highlight its short-
comings [11] in highly specialized tasks and, more critically, its tendency to inherit and
amplify the social biases embedded in unfiltered web data—underscoring the profound
ethical challenges associated with large-scale web-trained models.

The latest generation of multimodal models, known as Vision-Language Models
(VLMs), represents a direct evolution of CLIP’s foundational ideas [11]. While CLIP
introduced a new paradigm by aligning image and text representations for semantic
search and zero-shot classification, subsequent models such as BLIP-2 [26] build upon
this foundation by incorporating generative capabilities.

This new architecture, typically based on encoder-decoder structures, enables VLMs
not only to understand the relationship between text and image but also to perform more
flexible and powerful tasks such as image captioning, visual question answering, and



complex instruction following in natural language. For example, BLIP-2 introduces a
mechanism that allows a pre-trained Large Language Model (LLM) to “see,” learning
to extract and translate visual information into representations the LLM can process.

This ability for semantic alignment and conditional generation makes VLMs partic-
ularly effective in fashion recommendation scenarios. By projecting images and texts
into a shared, interpretable embedding space, these models enable systems that not
only recognize visually similar items but also understand nuances of style, context,
and preferences described in natural language—resulting in recommendations that are
more coherent, personalized, and explainable.

2.1.5 Style-Aware Recommendation

Recommendation in creative domains such as fashion presents challenges that
transcend traditional recommendation systems based on purchase history or content
similarity. The central question shifts from “What other items are similar to this one?”
to “What goes well with this piece?” Answering this requires understanding a complex
and subjective concept: style. This need becomes increasingly pressing with the pro-
liferation of e-commerce platforms and the vast volume of visual clothing data available
online.

Pair A Pair B
[Black Trousers}
Visually similar Visually distinct

Stylistically poor Stylistically compatible

Figure 2: lllustration of the distinction between visual similarity and stylistic compatibility
in fashion recommendation.

At the core of this challenge lies the fundamental distinction between visual similarity
and stylistic compatibility [27,28]. While two blue shirts may be visually similar, a white
shirt and black trousers may be stylistically compatible despite their visual dissimilarity.
Early approaches that relied on manually annotated fine-grained attributes (e.g., "dark
slim formal trousers”) proved limited: they fail to generalize to emerging trends, require
expert knowledge, and demand costly labeled datasets to be created and maintained
[27].

To overcome these limitations, modern research has focused on deep learning ap-
proaches that aim to model “style” as a latent embedding space. The central idea is to
learn a transformation where compatible items—even across different categories such



as shoes and shirts—are mapped close together, and incompatible ones are mapped
far apart. Supervision for this learning rarely comes from explicit “compatibility” labels
but rather from large-scale implicit signals such as item co-occurrence in shopping carts
or full outfit compositions created by users [27, 28].

However, even this approach introduces new challenges. Mapping all item types
into a single latent space may result in undesired compression of stylistic variation and
lead to violations of compatibility transitivity (invalid triangles), where compatibility be-
comes an incorrect transitive property [28].

2.1.6 Datasets for Fashion Recommendation

The development of intelligent and style-aware fashion recommendation systems
relies heavily on datasets that combine visual data with structured annotations and
semantic relationships between clothing items. These datasets are essential not only
for training multimodal architectures but also for enabling supervised learning tasks
such as visual embedding, compatibility modeling, and outfit generation. Among the
most widely adopted datasets in the field are:

* Polyvore [29]: A benchmark dataset containing user-created outfits, along with
item images and textual descriptions. It enables compatibility modeling and has
been central to early research in outfit recommendation.

+ iFashion (Alibaba) [30]: A large-scale dataset collected from e-commerce plat-
forms, annotated with fine-grained categories, attributes, and user metadata. Itis
useful for both item classification and style analysis in realistic commercial sce-
narios.

* Fashion32 [31]: A dataset focused on style diversity, including 32 distinct fashion
styles labeled by experts. It supports tasks such as multi-style classification and
personalized recommendation based on aesthetic attributes.

These datasets provide rich multimodal signals—images, style labels, item co-occurrences,
and curated outfit compositions—which are crucial for training and evaluating the ef-
fectiveness of fashion recommendation models, particularly those that aim to capture
complex relationships between style, context, and user preference.

21.7 Agent-Based Architectures and Interaction Protocols

Autonomous agents are computational systems capable of perceiving their environ-
ment, making decisions, and acting to achieve specific goals. As defined by Wooldridge
and Jennings [32], the concept of agency may be classified into two perspectives: the
weak notion, which emphasizes autonomy, proactivity, reactivity, and social ability; and
the strong notion, which attributes mentalistic constructs such as beliefs, desires, and

intentions.
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Figure 3: Comparison between monolithic reasoning pipelines and hierarchical multi-
agent architectures for recommendation tasks.

To clarify the architectural motivation behind agent-based approaches, Figure 3
contrasts a monolithic reasoning pipeline with a hierarchical multi-agent organization.
While monolithic architectures concentrate all reasoning into a single model, hierar-
chical designs explicitly separate perception, profiling, and decision-making, reducing
context dilution and improving interpretability.

Originally applied in distributed computing, cooperative environments, and intelli-
gent retrieval systems, agents have gained renewed importance with their integration
into architectures driven by large language models (LLMs). These models greatly en-
hance the reasoning capabilities of agents, allowing them to interpret, explain, and act
based on rich contextual inputs.

A particularly relevant advancement in this direction is the ReAct paradigm, in-
troduced by Yao et al. [33], which enables agents to interleave symbolic reasoning
("thoughts”) with environment-driven actions ("acts”). Rather than relying solely on
static decision trees or predefined pipelines, ReAct agents dynamically generate hy-
potheses, plan internally, and interact with external sources—such as APIls, search
engines, or data platforms—before formulating a final response.

This model has proven effective in tasks like question answering, fact verification,
and simulated navigation, often outperforming both pure reasoning (e.g., Chain-of-
Thought) and pure tool-use baselines. Importantly, ReAct-based agents also improve
transparency, as their thought-action sequences can be audited or guided by human
operators—an essential feature in high-stakes or subjective domains.

In the context of fashion recommendation, this evolution supports the development
of multimodal agents capable of understanding language, processing images, and adapt-
ing to user preferences. One illustrative example is the Neural Outfit Recommendation
(NOR) framework [34], which incorporates a natural language generation module that
explains recommendations through abstract comments, enabling agents to justify outfit



choices based on visual compatibility, inferred user intent, and contextual alignment.

As agent-based architectures evolve toward greater modularity and tool-oriented
design, recent initiatives have proposed standardized interfaces to coordinate inter-
actions between language models and external resources. One such initiative is the
Model Context Protocol (MCP) [5], an open protocol designed to support secure and
structured communication between Al agents and external tools. Rather than intro-
ducing new cognitive or reasoning mechanisms, MCP operates at the infrastructural
coordination layer, reinforcing established principles in distributed systems and agent-
based Al, such as explicit context boundaries, mediated tool interaction, and modular
composition of autonomous agents.

Likewise, its reliance on controlled tool invocation reflects prior work on tool-mediated
reasoning in language models [33, 35]. It is consistent with foundational principles
of multi-agent systems and rational agent architectures, in which complex behaviors
emerge from the coordination of specialized and loosely coupled agents [36—38].

By combining reasoning, action, and multimodal interaction, agent-based archi-
tectures form the foundation for next-generation fashion recommendation systems—
capable of delivering not only accurate results but also meaningful, transparent, and
user-aligned experiences.

2.1.8 Semantic Representation and Evaluation Foundations

This section outlines the theoretical foundations underlying the evaluation strategy
adopted in this work, focusing on Transformer-based sentence embeddings and the
LLM-as-a-Judge paradigm [39]. Figure 4 summarizes two complementary assessment
perspectives commonly employed in contemporary multimodal and generative sys-
tems: quantitative semantic similarity analysis and qualitative, judgment-based eval-
uation.

[Generated Recommendation} [Input + Output + Rubric}
| l
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Quantitative Evaluation Qualitative Evaluation

Figure 4: Overview of the semantic and qualitative evaluation strategies adopted in the
literature.

The quantitative branch represents evaluation based on sentence-level semantic
representations and similarity metrics, while the qualitative branch captures evaluation



paradigms grounded in large language models acting as interpretable judges. Together,
these perspectives reflect a shift from surface-level textual matching toward semanti-
cally and contextually informed assessment strategies.

The introduction of BERT (Bidirectional Encoder Representations from Transform-
ers) fundamentally altered Natural Language Processing by enabling models to learn
deep, context-dependent representations of text [40]. However, standard Transformer-
based models such as BERT produce sentence embeddings that are highly anisotropic
and poorly suited for direct comparison using cosine similarity [41].

To address this limitation, Reimers and Gurevych proposed Sentence-BERT (S-
BERT), a framework that fine-tunes Transformer models using siamese and triplet net-
work architectures to generate semantically meaningful sentence embeddings [42].
This approach enables efficient computation of vector representations optimized for
semantic similarity comparisons via cosine distance. In the literature, cosine similar-
ity over S-BERT embeddings is widely adopted as a proxy for semantic relatedness
between textual artifacts, particularly in evaluation scenarios where lexical overlap is
insufficient.

While embedding-based similarity captures semantic proximity between texts, it
does not assess higher-level properties such as stylistic coherence, personalization
intent, or contextual appropriateness. To complement quantitative similarity metrics,
recent research has proposed the LLM-as-a-Judge paradigm [39], in which a strong
Large Language Model is positioned as a surrogate for human judgment.

In this framework, the model receives a structured prompt containing the input, the
system output, and an explicit evaluation rubric (e.g., personalization or stylistic coher-
ence), and produces both a numerical score and a natural language justification. Em-
pirical evidence suggests that LLM-based judges can achieve agreement levels com-
parable to those observed between human annotators, enabling scalable, semantically
grounded, and explainable evaluation of generative outputs.

2.2 RELATED WORKS

Several recent studies have addressed the challenges of fashion recommendation.
Below is a selection of representative and state-of-the-art contributions:

» FashionM3 [4]: FashionM3 is a multimodal assistant for fashion recommendation
that integrates textual and visual input with multi-turn dialogue. Based on a vision-
language model fine-tuned from Show-O and trained on the FashionRec dataset,
it supports personalized suggestions, virtual try-on, and style variation generation
with high precision. It outperforms baselines such as GPT-40 and LLaMA-3.2
in metrics like S-BERT, while maintaining lower computational complexity. User
studies demonstrated high satisfaction and practical usability. However, its ar-
chitecture relies on a centralized reasoning model, which may increase the risk



of context dilution when complex user histories and multimodal inputs must be
processed simultaneously.

» OutfitGAN [21]: OutfitGAN introduces a generative approach to completing par-
tial outfits with visually compatible items. It combines Generative Adversarial
Networks (GANs) with a compatibility model trained on iFashion and Polyvore
datasets. The generation is staged progressively to ensure visual coherence. It
outperforms previous approaches in both compatibility and diversity, achieving
visual quality comparable to real images—even with incomplete outfits.

* FLLM [43]: The Fashion Large Language Model (FLLM) is a domain-adapted
LLM enriched with fashion-specific knowledge. It leverages automatic prompt
generation and retrieval-augmented generation (RAG) to deliver personalized
and context-aware recommendations. Evaluated on the Polyvore dataset, it achieved
67.21% accuracy on the Fill-in-the-Blank task and showed robustness with limited
data. FLLM demonstrated strong performance in adapting to various styles and
use-case contexts.

» DiFashion [44]: DiFashion is a diffusion-based model for generative outfit recom-
mendation, capable of synthesizing compatible and personalized clothing items.
It conditions generation on item categories, internal outfit coherence, and user
preference history. Evaluated on the iFashion and Polyvore-U datasets, it out-
performed Stable Diffusion and OutfitGAN in visual fidelity, compatibility, and
personalization—being preferred by human judges in most qualitative tests.

» Al-Yo [45]: Al-Yo explores the psychosocial aspects and interaction design of
chatbots in the context of fashion recommendation, with a focus on user trust,
perception, and behavioral influence.

Approach | Multimodal| Generative | Dialog- | Style- Personalized | Multi-
Based Aware Agent
Arch.
FashionM3 | v v v v v —
OutfitGAN | — v — v — —
FLLM v v — v v —
DiFashion | v v — v v —
Al-Yo — — v — v —

Table 1: Comparison of related fashion recommendation approaches. Note that while
FashionM3 utilizes a single-agent orchestration, none of the baseline approaches ex-
plicitly employ a hierarchical multi-agent architecture.



These studies highlight the shift toward deeply personalized and context-aware
fashion recommendation systems that combine visual generation, multimodal interac-
tion, and adaptive user modeling. Table 1 summarizes key characteristics of repre-
sentative approaches, indicating the presence or absence of multimodal capabilities,
generative reasoning, dialog support, explicit style modeling, personalization mecha-
nisms, and agent-based interaction protocols.

Although these approaches differ in modality coverage, generative capability, dia-
log support, and personalization strategies, most rely on centralized or monolithic rea-
soning pipelines, in which perception, user modeling, and recommendation synthesis
are tightly coupled within a single inference flow. This architectural concentration lim-
its transparency and flexibility, reinforcing the relevance of exploring explicitly modular
and agent-based designs for fashion recommendation.

FashionM3 shares the same underlying dataset and multimodal scope as the present
study but adopts a centralized architecture in which reasoning remains monolithic. In
contrast, OutfitGAN and DiFashion primarily target visual generation and outfit com-
patibility, emphasizing image synthesis rather than contextual reasoning or decision
decomposition. FLLM advances domain adaptation by specializing a large language
model for fashion, yet still maintains a single-model reasoning pipeline without explicit
task separation. Al-Yo, in turn, focuses on conversational interaction and user trust,
addressing the social dimension of fashion chatbots rather than the architectural orga-
nization of the recommendation process.

In contrast, the proposed architecture departs from model-level extensions and in-
stead investigates the impact of explicitly decomposing the recommendation process
into specialized, autonomous agents. Rather than being defined by multimodality or
generative capacity alone, this distinction emerges from how contextual information is
structured, propagated, and combined during inference. Accordingly, the contribution
of this work is orthogonal to existing solutions: it does not aim to replace their underly-
ing models, but to examine how architectural decomposition influences interpretability,
semantic stability, and personalization behavior in fashion recommendation.
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METHODOLOGY

This section describes the experimental procedures adopted to validate the hypoth-
esis that an architecture based on autonomous agents offers advantages over mono-
lithic models in the task of fashion recommendation. The study is characterized as
applied and experimental research, structured as a comparative analysis between two
distinct architectural approaches.

3.1 DATA SELECTION AND SAMPLING

The experiments were conducted using data from the FashionRec dataset, specif-
ically the Personalized Recommendation subtask. This dataset provides user inter-
action histories, item images, and recommendation dialogues, serving as a reference
baseline for comparative evaluation.

A random sample of 30 test scenarios was extracted from the validation/test split
of the dataset. The sample size was intentionally limited, as the objective of this study
is not statistical generalization but controlled architectural comparison under identical
experimental conditions.

Each sample consists of the following elements:

1. User History: Used to simulate the user’s wardrobe and infer stylistic prefer-
ences.

2. User Query: The recommendation request expressed in natural language.

3. Context Images: A composite image or set of images representing the current
clothing items.

4. Ground Truth Response: The original recommendation provided by the dataset,
used as a reference baseline.

For each scenario, the same user history was provided to both architectures, and
the ground-truth recommendation was not included in the input context, ensuring that
no information leakage occurred during inference.



3.2 EXPERIMENTAL DESIGN

In this study, fashion recommendation serves as an experimental domain rather than
a domain-specific contribution, enabling controlled evaluation of architectural design
choices in multimodal, style-sensitive recommendation systems.

To ensure a fair comparison and isolate architectural design (Monolithic versus
Multi-Agent) as the primary experimental variable, both pipelines employed the same
generative backbone, GPT-40, across all stages. This model was selected because
it was used to generate the original recommendation dialogues in the FashionRec
dataset.

The OpenAl GPT-40 model was selected as the generative backbone for both ar-
chitectures to ensure consistency with the data generation process of the Fashion-
Rec dataset, whose original recommendation dialogues were produced using OpenAl-
based models. Using an identical model configuration across both pipelines minimizes
confounding factors related to model behavior, capacity, alignment, or training objec-
tives, allowing the experimental analysis to focus exclusively on the effects of architec-
tural orchestration.

The experiment therefore consisted of executing the same 30 scenarios through
two distinct pipelines and comparing their outputs in terms of quality, robustness, and
computational cost.

3.2.1 Architecture A: Monolithic Approach (Baseline)

Monolithic Architecture

. <>

Raw Context Injection

¥

Monolithic Agent
Single-Shot LLM
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Figure 5: Architecture A: Monolithic Baseline. A single-shot pipeline in which user
history, visual input, and instructions are jointly injected into the LLM context window.



This architecture simulates the standard operation of contemporary LLM-based rec-
ommendation systems without explicit task orchestration.

» Operation: A single-shot request is issued to the language model.

* Input: User history (textual and metadata format), user query, and item images
are injected simultaneously into a single context window.

* Objective: To generate a recommendation through holistic interpretation of the
entire input context.

3.2.2 Architecture B: Multi-Agent System (Proposed)
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Figure 6: Architecture B: Proposed Hierarchical Multi-Agent System. Sequential
pipeline illustrating the data flow among specialized agents.



The proposed architecture adopts task specialization and coordinated reasoning,
inspired by architectural principles associated with the Model Context Protocol (MCP).
Rather than implementing MCP directly, its core ideas are applied at an abstract archi-
tectural level to structure agent interaction and context flow. The system is composed
of the following agents:

1. Visual Fashion Analyst: Responsible exclusively for visual interpretation, gen-
erating a technical descriptive report of the input items.

2. Coordinator Agent: Acts as the central orchestrator, invoking other agents as
tools and managing information flow.

3. Profile Analyst: Processes the user’s historical interactions to extract a struc-
tured stylistic profile.

4. Recommender Agent: Produces the final recommendation by integrating the

visual report and stylistic profile.

3.2.3 Technical Stack and Implementation Environment

Both the proposed architecture and the monolithic baseline were implemented in a
dedicated Python environment. The following tools and libraries were used:

* Programming Language: Python (3.13.x)

Agent Orchestration and LLM API: OpenAl Agents SDK

* Vector Similarity: SentenceTransformers (all-mpnet-base-v2) and NumPy

Data Handling: Pandas

All experiments were executed on the same local machine under identical software
and hardware conditions. Inference was performed using a fixed model version and
default APl parameters to ensure consistent execution across all runs.

3.3 METRICS AND EVALUATION PROCEDURES

The evaluation procedures operationalize the semantic and judgment-based as-
sessment framework discussed in Section X, combining embedding-level similarity met-
rics with rubric-driven qualitative evaluation. Two complementary evaluation strategies
were applied to compare the outputs of the Monolithic and Multi-Agent architectures.

A fixed and standardized evaluation prompt was used across all scenarios and ar-
chitectures to ensure consistency and avoid evaluation bias; the prompt structure, eval-
uation criteria, and scoring scale were kept constant, with variation occurring only in the
system-generated output being assessed.



3.3.1 Semantic Similarity (Embedding Similarity)

Quantitative evaluation was performed using S-BERT similarity [42], computed as
the cosine similarity between sentence embeddings of generated recommendations
and their corresponding ground-truth responses. Embeddings were obtained using the
pre-trained all-mpnet-base-v2 model.

* Procedure: Outputs from both architectures were embedded and compared against
the ground-truth response embeddings.

* Objective: To assess which architecture maintains higher semantic adherence
to the reference responses.

 Justification: S-BERT serves as a proxy for semantic adherence, indicating
whether factual constraints such as item category, attributes, and contextual align-
ment are preserved.

Semantic similarity, as measured by S-BERT, does not capture subjective notions
of fashion quality or stylistic preference. Instead, it reflects semantic consistency and
factual alignment with the reference response.

3.3.2 Evaluation via LLM-as-a-Judge (LLM Rubric Evaluation)

To complement embedding-based metrics, a qualitative evaluation was conducted
using an advanced Large Language Model acting as a judge. This approach addresses
the limitations of purely mathematical similarity measures, which do not capture reason-
ing depth or explanatory clarity.

Input Context
(Query + History)

( Score (1-5)
L + Explanation

{ System Output W

) (LLM-as-a-Judgew
(Recommendatlon)J )

EEvaIuation Rubric

Figure 7: LLM-as-a-Judge Evaluation Pipeline. Rubric-driven qualitative assessment
under blinded conditions.

Figure 7 illustrates the evaluation pipeline adopted in this study, highlighting how
system outputs are assessed through a rubric-driven LLM-as-a-Judge process under

blinded conditions.



As depicted, the judge model does not evaluate recommendations in isolation. In-
stead, it jointly considers the user context, the system-generated output, and an explicit
evaluation rubric to produce both a numerical score and a natural-language justification.

Based on this setup, the judge evaluated blinded input—output pairs according to a
structured rubric on a 5-point scale (1, 3, and 5 anchors), defined as follows:

* Interpretability (Process Transparency): Assesses the clarity and depth of the
justification provided.

* Personalization (Contextual Preferences): Evaluates explicit use of the user’s
historical preferences.

* Relevance (Constraint Adherence): Measures compliance with prompt require-
ments.

The evaluation strategy adopted in this study aims to assess the effectiveness of
the proposed recommendation architecture through controlled experimental analysis.
Rather than comparing the system with commercial or large-scale industrial solutions,
the evaluation focuses on intra-architectural comparison, analyzing how different ar-
chitectural organizations influence semantic consistency, interpretability, and person-
alization stability. This approach enables a clear examination of the system’s ability
to represent stylistic preferences and produce coherent, explainable recommendations
under well-defined conditions.

The LLM-as-a-Judge paradigm is employed as an evaluation mechanism aligned
with the characteristics of style-sensitive fashion recommendation. Since stylistic co-
herence and semantic alignment are inherently subjective, the assessment relies on
language-based judgments rather than explicit ground-truth labels. In this context, the
qualitative evaluation functions as a comparative diagnostic tool to analyze architectural
behavior, rather than as an absolute performance metric.

By constraining both the monolithic and hierarchical approaches to the same mod-
els, prompts, datasets, and execution conditions, the analysis isolates architectural
structure as the primary variable under investigation. The results therefore reflect how
reasoning decomposition and contextual separation influence recommendation behav-
ior, rather than serving as a claim of market-level accuracy or general-purpose recom-
mendation performance.
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RESULTS AND DISCUSSION

This chapter presents the findings from the comparative analysis between the pro-
posed Hierarchical Multi-Agent System and the Monolithic Baseline. The data is ana-
lyzed across three dimensions: (1) Quantitative Semantic Consistency using S-BERT
embeddings, (2) Qualitative Performance using an LLM-as-a-Judge framework, and (3)
Computational Efficiency.

The overall performance summary of both architectures is presented in Table 2.
As observed, the Hierarchical System outperforms or matches the baseline across all
quality metrics, with a notable trade-off in computational cost.

Metric Hierarchical Monolithic Difference Interpretation

Quality Metrics

Interpretability 5.00 4.87 +0.13 Improved
Personalization 5.00 3.60 +1.40 Improved
Relevance 4.87 4.87 0.00 Equivalent
Overall Score 4.96 4.44 +0.51 Improved
Semantic Similarity 0.815 0.799 +0.016 Improved

Computational Cost

Tokens Used 4447 782 +3665 Higher cost

Table 2: Comparison of Hierarchical vs. Monolithic Architectures Across Quality Metrics
and Computational Cost.

The increased token usage observed in the hierarchical architecture reflects the ex-
pected computational overhead of reasoning decomposition and agent coordination.
This cost trade-off is intrinsic to modular architectures and should be interpreted along-
side the observed gains in interpretability and personalization, rather than as an effi-
ciency regression.



4.1 QUANTITATIVE ANALYSIS: SEMANTIC SIMILARITY AND IN-
FERENCE STABILITY

The semantic alignment of the generated recommendations with the ground truth
(FashionRec dataset) was measured using cosine similarity on S-BERT embeddings.
While the mean similarity showed a modest improvement (+2.0%), the distribution of
scores reveals a critical operational advantage regarding system stability.

Distribution of Semantic Similarity Scores Paired Comparison (r = 0.771)
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Figure 8: Distribution of Semantic Similarity Scores (Left) and Paired Comparison
(Right)

As visualized in the boxplot in Figure 8, the Hierarchical System exhibits a signifi-
cantly more compact distribution. The interquartile range is narrower than that of the
Monolithic system, indicating higher consistency.

Furthermore, the scatter plot highlights the “performance floor.” The data points
falling below the y = x diagonal line represent cases where the Monolithic system out-
performed the Agents, but these are clustered near the top (high similarity). Conversely,
the points where the Hierarchical system wins are those where the Monolithic system
suffered degradation (scores below 0.7).

This visual evidence is consistent with Hypothesis H2 (Semantic Robustness),
suggesting that the decomposition of the recommendation workflow reduces semantic
inconsistencies and mitigates context dilution commonly observed in monolithic multi-
modal models. By decomposing the task, the system prevents semantic drift frequently
observed when monolithic models attempt to process visual and textual context simul-
taneously.

Beyond semantic robustness, the same distributional behavior provides indirect ev-
idence for Hypothesis H3 (Efficiency Trade-off). Although contextual complexity was
not explicitly parameterized, the variability across user histories, visual inputs, and nat-



ural language queries introduces heterogeneous multimodal context conditions. Under
these conditions, the Monolithic architecture exhibits sharper degradation in semantic
similarity for lower-performing cases, while the Hierarchical system maintains a higher
performance floor. This indicates greater inference stability under increasing contextual
integration demands, achieved at the expense of higher computational cost.

4.2 QUALITATIVE ANALYSIS: STYLE AWARENESS AND PERSON-
ALIZATION

To capture nuances beyond vector similarity, the systems were evaluated by an LLM
Judge on a scale of 1 to 5. The comparative results are visualized in Figure 9.

LLM-as-a-Judge Evaluation: Hierarchical vs Monolithic System

Score (1-5 scale)

Interpretability Personalization Relevance Overall Score

Figure 9: LLM-as-a-Judge Evaluation Results. The bar chart compares the mean
scores (1-5 scale) across three criteria, with error bars indicating standard deviation.
Note the significant gap in the Personalization metric.

The most striking finding is the disparity in the Personalization metric. The Hierar-
chical System achieved a perfect mean score of 5.00, whereas the Monolithic baseline
dropped to 3.60. The error bars indicate that the Monolithic system had high variability
in personalization (sometimes using the history, sometimes ignoring it), while the Agent
system was perfectly consistent.

This confirms Hypothesis H1 (Personalization). The Monolithic model, despite
having the user history in its context window, often suffers from context dilution. By
dedicating a specific Profile Analyst agent to process the history before the recom-



mendation is generated, the proposed architecture ensures that user preferences are
treated as a hard constraint rather than optional context.

Although the LLM-as-a-Judge paradigm provides a scalable and structured mecha-
nism for qualitative evaluation, it does not replace human judgment. Its role in this study
is to approximate expert-level stylistic assessment in a consistent and reproducible
manner, enabling comparative analysis under controlled conditions.

It is also acknowledged that the judge model shares architectural and training char-
acteristics with the generative backbone used in both pipelines, which may introduce
alignment bias. This risk is mitigated by blind evaluation, explicit rubrics, and the com-
parative nature of the analysis, but it remains a limitation to be addressed by future
studies involving human evaluators. Therefore, the qualitative results should be inter-
preted as indicative rather than definitive measures of stylistic quality.

In terms of Relevance, both systems performed identically (4.87), suggesting that
the underlying model (GPT-40) is inherently capable of understanding instructions. The
value of the Agent architecture lies specifically in deep integration of context (Style), not
just content (Category).

4.3 COMPUTATIONAL EFFICIENCY ANALYSIS

A critical trade-off for the improved robustness and personalization is the compu-
tational cost, measured in token usage per request. This relationship is visualized in
Figure 10.
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Figure 10: Computational Efficiency Analysis. The chart compares the average token
usage per request between the Hierarchical Multi-Agent System and the Monolithic
Baseline.



The Hierarchical System consumed an average of 4,447 tokens per request, com-
pared to 782 tokens for the Monolithic baseline, corresponding to an approximate 4.7x
increase in token usage. As shown in the distribution plot, token consumption in the
Hierarchical system is not only higher but also more variable. This overhead is primarily
driven by explicit intermediate reasoning artifacts—such as visual analysis reports and
profile summaries—exchanged between specialized agents. While this design incurs
additional computational cost, it directly reflects the architectural decision to external-
ize and modularize reasoning processes rather than compressing them into a single
context window.

This result reinforces the trade-off described in Hypothesis H3, where improved in-
ference stability under complex multimodal context is obtained through increased token
consumption and agent coordination overhead.

4.4 DISCUSSION OF FINDINGS

The visual and statistical evidence supports the following conclusions regarding the
research objectives:

1. Personalization as an Architectural Challenge: The perfect score in person-
alization combined with the high token cost suggests that “Style-Awareness” re-
quires explicit cognitive steps. The Monolith failed to personalize not because it
lacked knowledge, but because it lacked the “attention span” to process multi-
modal and historical context simultaneously.

2. Inference Stability via Specialization: The tighter similarity distribution confirms
that decomposing the task reduces the search space for each individual agent,
minimizing abrupt inference degradation under complex context integration

3. The Efficiency Trade-off: The results confirm that high-quality, personalized rea-
soning comes at a cost in computational resources. While the proposed architec-
ture delivers superior user experience and interpretability, future work must fo-
cus on optimization strategies—such as summarization of intermediate reasoning
steps or use of smaller specialized agents—to improve efficiency without sacri-
ficing gains.
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CONCLUSION

Fashion recommendation systems pose challenges that go beyond item similarity
or transaction optimization, particularly when they rely on the combined interpretation
of visual cues, user history, and subjective aesthetic preferences.

To address these challenges, this work presents the design, implementation, and
evaluation of a hierarchical multi-agent recommendation architecture inspired by princi-
ples of the Model Context Protocol (MCP). By decomposing the recommendation work-
flow into specialized agents responsible for visual analysis, user profile modelling, and
recommendation synthesis, the proposed architecture restructures contextual process-
ing and integration, and was evaluated on the FashionRec dataset in direct comparison
with monolithic language-model-based recommendation approaches.

The hierarchical architecture exhibited greater personalization consistency and in-
terpretability, along with improved semantic stability under heterogeneous multimodal
inputs. By separating visual analysis from user profile modelling, the approach mit-
igates semantic drift commonly observed in monolithic pipelines, suggesting that ar-
chitectural organization influences how large language models are applied in style-
sensitive recommendation settings.

Efficiency is not solely a property of the model itself, but a design variable, par-
ticularly in multimodal recommendation systems where interpretability and personal-
ization are primary design priorities. The increase in token consumption is a direct
consequence of the modularization of reasoning, highlighting an architectural trade-off
between efficiency and interpretability in multimodal systems.

Future work may explore the use of compact or fine-tuned language models, includ-
ing retrieval-augmented generation (RAG), as well as adaptive summarization strate-
gies to reduce coordination overhead.

Overall, hierarchical multi-agent architectures exhibit greater contextual stability, in-
terpretability, and stylistic coherence than monolithic pipelines in fashion recommenda-
tion tasks.
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