Use este identificador para citar ou linkar para este item: https://repositorio.idp.edu.br//handle/123456789/5666
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorGomes, Jeremias Moreira-
dc.contributor.authorBrandão-Martins, João Vitor Moreira-
dc.date.accessioned2026-01-22T19:24:48Z-
dc.date.available2026-01-22T19:24:48Z-
dc.date.created2025-
dc.date.issued2026-
dc.identifier.citationBRANDÃO-MARTINS, João Vitor Moreira. Application of LLMS in source code recovery from Python bytecode. 2025. 75 f. Monografia (Graduação em Ciência da Computação) – Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa, Brasília, 2026.pt_BR
dc.identifier.urihttps://repositorio.idp.edu.br//handle/123456789/5666-
dc.description.abstractSource code recovery from intermediate representations, such as bytecode or binary code, plays a fundamental role in reverse engineering, especially in scenarios where the original source is unavailable. Although Python is typically referred to as an inter preted language, its execution involves compilation into bytecode, an intermediate form executed by the Python Virtual Machine (PVM). This process removes high-level infor mation and introduces challenges for accurate decompilation. Traditional tools often produce code that is syntactically valid but semantically limited or difficult to interpret. In recent years, Large Language Models (LLMs) based on transformer architectures have shown promising results in tasks involving source code understanding, genera tion, and even binary analysis. This study investigates the application of LLMs to the task of recovering Python source code from bytecode, an area still largely unexplored in the literature. Through a systematic review of related work, the research identifies a gap in the use of LLMs for Python bytecode decompilation. This work proposes an approach centered on modern LLMs. The hypothesis is that such models can assist in both syntactic and semantic reconstruction of the original source code. The expected contributions include evaluating the success rate of this approach and offering new insights into the intersection between machine learning and reverse engineering.pt_BR
dc.language.isoporpt_BR
dc.publisherIdppt_BR
dc.rightsOpen Accesspt_BR
dc.subjectEngenharia reversa de softwarept_BR
dc.subjectPython - Linguagem de programaçãopt_BR
dc.subjectGeração de código - Ciência da Computaçãopt_BR
dc.titleApplication of LLMS in source code recovery from Python bytecodept_BR
dc.typeTese de bachareladopt_BR
dc.location.countryBRApt_BR
Aparece nas coleções:Trabalhos de Conclusão de Curso (Graduação em Ciência da Computação)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Monografia_JOÃO VITOR MOREIRA BRANDÃO-MARTINS_Graduação em Ciência da Computação.pdf1.52 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.